Modeling Rate-and-State Friction with Python
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We are going to look at a real life problem and then make a tool to
help solve it for researchers and educators
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Most earthquakes occur on plate boundaries

World Earthquakes Magnitude > 4 from 1980 - 2015




Faults can creep in an aseismic (stable) fashion

= 1 1 1= TP PP

Shear Stress

p4273

Time



(7))
=
(7))
-
Q
-
o
D
-
o
(7]
(4°)
p
[
=
()
&
@)
(7))
o
c
Q
(7))
Q
Q.
(7))
e
-
(1)
[ Tt
eT0)
=
Q.
Q
Q
@

3
<

A

mav

Images: Dr. Peggy Hellweg, Wikipedia, USGS




Faults can fail in an unstable and dynamic way that produces
seismic radiation
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We have conceptualized earthquakes as a stick-slip process

Stick-Slip as a Mechanism for

Earthquakes
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The spring-slider is the simplest physical model
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Small changes in stiffness can completely change the behavior of
even the simplest system
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We can model the system with the “rate-and-state” equations
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There are many proposed state relations in the wild
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We can create small fault zones in the laboratory
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We can create small fault zones in the laboratory
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Theory is when you know everything, but nothing works. Practice is when everything works, but no
one knows why. In our lab, theory and practice are combined: nothing works and no one knows why.



Everyone had their own program to solve the RSF equations
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Everyone had their own program to solve the RSF equations

ch(rsp->law)

psil psi2 = -log(v_s/rsp—>v_ref);
psi_err_scale = fabs(log(v_s/rsp->v_ref));

rsp—>dcl/v_s;
rsp—>dc2/v_s;

rsp—>vr_dcl = rsp—>v_ref/(TWOxrsp->dcl)

rsp—>vr_dc2 = rsp->v_ref/(TWOxrsp->dc2);
psil = (TWOxrsp—>dcl)/v_s;
psi2 = (TWOxrsp->dc2)/v_s;

if(rsp—>one_sv_flag)
rsp—>vr_dc2 = SMALL_NUM;

for(i=1;i<=(rsp->vs_row-rsp->first_row);i++)
{

mod_mu[i] = mu_s+rsp—>lin_termk(x[i]-x[(rsp->vs_row-rsp—>first_row)]);
v_slider[i] = v_s;

state[i] = psil;

sd[i]=0.0;

phi[i] = phi_ref - epsilonklog(psilkrsp->vr_dcl);

i=(rsp->vs_row-rsp—>first_row+l);




feldspar = Componet('Feldspar', 'Solid')

feldspar.volume_percent = 0.26
feldspar.bulk_modulus 76e9
feldspar.shear_modulus = 26e9
feldspar.density = 2560

If you can get those programs and try to reproduce the results, it
often ends in tears

[ O O | reproduction_code
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12} jleeman » W data Today, 11:00 AM
. » | | data2 Today, 11:00 AM
E Al My Files . _
» | | Figure_1 Today, 10:59 AM
2 Dropbox » [ Figure_1_05.06_14 Today, 10:59 AM
7 iCloud Drive » [ final_figures Today, 11:00 AM
@ » || model_1 Today, 10:59 AM
2 A
AirDrop » | | model_with_bugfix Today, 11:00 AM
;/’-\- Applications » | 7] model_works Today, 11:00 AM
E Desktop » BN run12 Today, 11:00 AM
» || Why_didnt_this_work Today, 11:00 AM
@ Documents
0 Downloads
= shares
INBOX
Camera Uploads
B RiayFynerimente & Macintosh HD > [X] Users » % jleeman > [ Desktop > reproduction_code

10 items, 228.63 GB available

model = MediumModel( [quartz, clay, feldspar])
model.critical_porosity = 0.4
model.n =




If you can get those programs and try to reproduce the results, it
often ends in tears
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model =
model.cCl
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The results often looked “right” or “comparable”

Marone, 1998
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The results often looked “right” or “comparable”
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The tools were not friendly to students either

This program solves the rate and state friction laws with 1-d elastic interaction. One or two state variables can be used.

Usage: ./rsfs op_file law v_init v_load hold_time op_inc_hold op_inc_disp max_disp k a bl Dcl b2 dc2 -svtd
where law is: d, r, p, or s
d=Dieterich, slowness law, r=Runia, slip law,
p=Perrin-Rice, quadratic law, s=Segall and Rice eq'n 17
output time vs mu
= output 1ln(v_s/v_init) vs mu
output time vs state(theta)
= output Slider_Displacement vs mu
= output time vs porosity
= stop calculation at peak friction on reload, write a data point there
= set ref fric to 0.6 at 1 mic/s, rather than to arb. value to give 0.6 as initial value

LoadPointDisplacement vs mu is always output, and lp_dis vs. porosity is output if s law is used
Command line definitions:

v_init is the initial, steady-state velocity prior to the hold

v_load is the reload velocity following the hold

hold_time is the hold time in seconds

op_inc_hold is the time increment for output during the hold

op_inc_disp is the disp increment for output following the hold

disp is the final disp for the calc, following the hold

To do a 1 state variable model, set dc2 < @

To do a vel step, set hold_time to a small number and op_inc_hold < hold_time, and use different v_init and v_load

Note: k should have dimensions of 1/length
One or more ASCII text files are written as output. Each row has two columns (time, displacement, friction, etc --as chosen by command line options summarized above) and the output frequency is specified by the co
mmand line parameters op_inc_hold and op_inc_disp

Two example command lines are:
rsfs junk d 1 1 100 .1 .1 200 le-3 0.005 0.01 10 1 -10 -t
rsfs junk d 1 10 le-7 Se-8 0.1 300 le-3 0.005 0.01 10 1 -10 -t

The first example specifies a slide-hold-slide test with one state variable. The output file name is junk, the dieterich state evolution law is used, the initial and re-load velocities are 1 micron/s, hold
time is 100 sec, output is written every 0.1 sec during the hold and 0.1 micron after the hold up to a maximum of 20@ microns, stiffness is 0.001 (friction) per micron, and constitutive parameters are a=0.005, b=
0.01 and Dc of 10 microns. Note that there is nothing intrinsic about the units; the length unit could just as well be taken as meters and the time as hours. The only requirement is that all units be consistent. T

he files junk.dis and junk.tim are output. Each file contains a one line header and then x,y pairs of: junk.dis: load point displacement and friction junk.tim time and friction.

The second example specifies a velocity step test from 1 mic/s to 10 mic/s. There are two data points written during the 'hold' which lasts only le-7 seconds (these are irrelevant to the rest of the calcul
ation) and then data are written every 0.1 micron up to a maximum of 300 microns. The friction parameters and output files are the same as the first example.
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Include the common state relations and elastic coupling

model = rsf.Model()

# Set model initial conditions

model.mu@® = 0.6 # Friction initial (at the reference velocity)
model.a = 0.005 # Empirical coefficient for the direct effect

model.k = 1le-3 # Normalized System stiffness (friction/micron)
model.v = 1. # Initial slider velocity, generally is vip(t=0)

model.vref = 1. # Reference velocity, generally vip(t=0)

statel = staterelations.DieterichStatel()
statel.b = 0.01 # Empirical coefficient for the evolution effect
statel.Dc = 10. # Critical slip distance

model.state_relations = [statel] # Which state relation we want to use

# We want to solve for 40 seconds at 100Hz
model.time = np.arange(0,40.01,0.01)

# We want to slide at 1 um/s for 10 s, then at 10 um/s for 31
lp_velocity = np.ones_like(model.time)
lp_velocity[10x100:] = 10. # Velocity after 10 seconds is 10 um/s

# Set the model load point velocity, must be same shape as model.model_time
model. loadpoint_velocity = lp_velocity

# Run the model!
model.solve()



Easily make “standard” plots
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Allow users to define their own rules



Allow users to define their own rules

class MyStateRelation(staterelations.StateRelation):

Deflne |t el ??t—_Steady—Stfn’Fe(_Sﬂf; System):r -

self.state = self.Dc/system.vref

def evolve_state(self, system):
return -1 * (system.v % self.state / self.Dc) * log(system.v % self.state / self.Dc)



Allow users to define their own rules

class MyStateRelation(staterelations.StateRelation):

Néea TO provide a Steaday state a LCUaLtT10l nethod

Deﬂne |‘t: def ?(_et__;,téady_state(self, sy;t;mi:

self.state = self.Dc/system.vref

def evolve_state(self, system):
return -1 * (system.v % self.state / self.Dc) * log(system.v % self.state / self.Dc)

statel = MyStateRelation()
U Se it . statel.b = 0.005 # Empirical coefficient for the evolution effect

statel.Dc = 10. # Critical slip distance

model.state_relations = [statel] # Which state relation we want to use



Everything is tested. Against itself which has been compared to
another model.
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We found that some “well established” results were functions of
how the model was setup
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We found that some “well established” results were functions of
how the model was setup
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pypi package 0.6.0 | build passing

Jupyter Dashboards Layout

Dashboards make a great way to deploy for student interaction

Extension for Jupyter Notebook that enables the layout and presentation of dashboards from notebooks.
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Give it a try! There are many potential applications: rsfmodel.com

National Library of Australia



http://rsfmodel.com

