Modeling Rate-and-State Friction with Python

0.603 : : : : : 0.603
0.602
0.601 0.602
C
5 0.600
© 0.599
™ 0.598 0.601;
0.597
0596 : 5 s - : -) g 0.600
Load Point Displacement [mm] ks
T 50 & 0.599
J.R. Leeman, R. May, C. Marone
< a0/
% - 0.598}
S
520» 0.597
.§ 10 L
[] —
JOhaneeman.Com/@geo Ieeman S %100 200 300 400 500 600 700 059506 —05 00 05 10 15 20

Time [sec] In(V/VO0)

Department of Geosciences : :

The Pennsylvania State University o

July 13, 2016 J

L o M “ M NWM M I North - South |
" L e MM N ﬁ }\MMP H East - West |

0 500 1000 1500 2000 2500 3000 3500
PENN STATE ROCK AND SEDIMENT
MECHANICS LABORATORY

Seconds Since Earthquake

Avoiding Common Academic Software Slip Ups

J.R. Leeman, R. May, C. Marone

johnrleeman.com/@geo_leeman
Department of Geosciences
The Pennsylvania State University

July 13, 2016

PENN STATE ROCK AND SEDIMENT
MECHANICS LABORATORY

We are going to look at a real life problem and then make a tool to
help solve it for researchers and educators

Ay 4

O W‘g\

A
‘ Footwall N

C. Ammon

Horzontal Surface Hotizontal
9

5

Vertical
=

Earthquakes 101

.S.lid'e'r N Motor

(Plate Movement)

—

Bansna el Spring 2
: R B) (Elastic Rocks)

D

O Pt T N T e S e (A I S P e

e

Frictional Theory

Python Implementation

Most earthquakes occur on plate boundaries

World Earthquakes Magnitude > 4 from 1980 - 2015

Faults can creep in an aseismic (stable) fashion

= 1 1 1= TP PP

Shear Stress

p4273

Time

(7))
=
(7))
-
Q
-
o
D
-
o
(7]
(4°)
p
[
=
()
&
@)
(7))
o
c
Q
(7))
Q
Q.
(7))
e
-
(1)
[Tt
eT0)
=
Q.
Q
Q
@

3
<

A

mav

Images: Dr. Peggy Hellweg, Wikipedia, USGS

Faults can fail in an unstable and dynamic way that produces
seismic radiation

P S

l Y 1 WMM Up - Down
M 1' l” " \WF w \ North'- South
M' ﬁ qu East - West

0 500 1000 15 2000 2500 3000 3500
Secongf Since Earthquake

e Y1 10 1 = N . P ST

Shear Stress

p4347 /

Time

We have conceptualized earthquakes as a stick-slip process

Stick-Slip as a Mechanism for

Earthquakes

.Al.)stract. ..S'u.ck-sftp often accompanies a Plectrum
frictional sliding in laboratory experi- v
ments with geologic materials. Shallow- M File
focus earthquakes may represent stick-
slip during sliding along old or newly
formed faults in the earth. In such a 4’ V Sound
situation, observed stress drops repre- M pulse

sent release of a small fraction of the
t - 1 H 1
stress supported by the rock surround b Plectrum File —} @m Stick
ing the earthquake focus.

\

\
]]
1 'Slip'
d N ’ generates

2r ye -5 : sound

pulse
— <P =2.1kb -
\ -

- (Patek, 2001)
r\ -4 s
_ - I -
g MY N .
v \ -
=] \ \ “ o
w \ \ @
Th \ \ -
: ‘i \ \ -
- w \ P\ 12 4
\ \
AN -
\‘ \‘ \ \f\ff\ >
\ \ \ ‘\ -
\1 b 41 ::
WITH INITIAL SAWCUT
0 4 4 0
0 | 2

Axial displacement (mm)
(Brace and Byerlee, 1966)

cimindustry.com

The spring-slider is the simplest physical model

Slider | Motor
ST (Plate Movement)

Pl Spring

(Elastic Rocks)

—

Small changes in stiffness can completely change the behavior of
even the simplest system

Small changes in stiffness can completely change the behavior of
even the simplest system

Small changes in stiffness can completely change the behavior of
even the simplest system

Small changes in stiffness can completely change the behavior of
even the simplest system

We can model the system with the “rate-and-state” equations

d 1 — 1 — bln(¥2Y
'uk;(VV()exp H HO (DC))
a

There are many proposed state relations in the wild

Aging

Slowness

PRZ

Nagata

d_@ —1 ‘/Slider(g
dt D,

|
=

d_@ ‘/élidere ‘/slidere
dt D,

d_(g — 1 _ Vvslidere ’
dt

do 1 ‘/slidere C d:u

We can create small fault zones in the laboratory

VA Ve

o —

We can create small fault zones in the laboratory

™"

o
e SR
4

Theory is when you know everything, but nothing works. Practice is when everything works, but no
one knows why. In our lab, theory and practice are combined: nothing works and no one knows why.

Everyone had their own program to solve the RSF equations

Everyone had their own program to solve the RSF equations

THIRD EDITION

Everyone had their own program to solve the RSF equations

Second edition

Earthquakes and Faulting
Christopher H.Scholz

THIRD EDITION

Everyone had their own program to solve the RSF equations

Second edition

Earthquakes and Faulting
Christopher H.Scholz

THIRD EDITION

Everyone had their own program to solve the RSF equations

Second edition

Earthquakes and Faulting
christopher H. Scholz
THIRD EDITION

Everyone had their own program to solve the RSF equations

Second edition

Earthquakes and Faulting
christopher H. Scholz

THIRD EDITION

Everyone had their own program to solve the RSF equations

Everyone had their own program to solve the RSF equations

ch(rsp->law)

psil psi2 = -log(v_s/rsp—>v_ref);
psi_err_scale = fabs(log(v_s/rsp->v_ref));

rsp—>dcl/v_s;
rsp—>dc2/v_s;

rsp—>vr_dcl = rsp—>v_ref/(TWOxrsp->dcl)

rsp—>vr_dc2 = rsp->v_ref/(TWOxrsp->dc2);
psil = (TWOxrsp—>dcl)/v_s;
psi2 = (TWOxrsp->dc2)/v_s;

if(rsp—>one_sv_flag)
rsp—>vr_dc2 = SMALL_NUM;

for(i=1;i<=(rsp->vs_row-rsp->first_row);i++)
{

mod_mu[i] = mu_s+rsp—>lin_termk(x[i]-x[(rsp->vs_row-rsp—>first_row)]);
v_slider[i] = v_s;

state[i] = psil;

sd[i]=0.0;

phi[i] = phi_ref - epsilonklog(psilkrsp->vr_dcl);

i=(rsp->vs_row-rsp—>first_row+l);

feldspar = Componet('Feldspar', 'Solid')

feldspar.volume_percent = 0.26
feldspar.bulk_modulus 76e9
feldspar.shear_modulus = 26e9
feldspar.density = 2560

If you can get those programs and try to reproduce the results, it
often ends in tears

[O O | reproduction_code
Edit Tags —
H = BIEREREY <l &3~
Favorites Name ~ Date Modified Size
12} jleeman » W data Today, 11:00 AM
. » | | data2 Today, 11:00 AM
E Al My Files . _
» | | Figure_1 Today, 10:59 AM
2 Dropbox » [Figure_1_05.06_14 Today, 10:59 AM
7 iCloud Drive » [final_figures Today, 11:00 AM
@ » || model_1 Today, 10:59 AM
2 A
AirDrop » | | model_with_bugfix Today, 11:00 AM
;/’-\- Applications » | 7] model_works Today, 11:00 AM
E Desktop » BN run12 Today, 11:00 AM
» || Why_didnt_this_work Today, 11:00 AM
@ Documents
0 Downloads
= shares
INBOX
Camera Uploads
B RiayFynerimente & Macintosh HD > [X] Users » % jleeman > [Desktop > reproduction_code

10 items, 228.63 GB available

model = MediumModel([quartz, clay, feldspar])
model.critical_porosity = 0.4
model.n =

If you can get those programs and try to reproduce the results, it
often ends in tears

reproduction_code

s I =D ol ZEv | £ v

feldspal
feldspal
feldspal
feldspal
feldspal

THIS HAS BEEN
AN INTERESTING ENCOUNTER

model =
model.cCl
model.n = 8

The results often looked “right” or “comparable”

Marone, 1998

0.1 0.1

0.05 F 0.05

2 0 o
-0.05 |- -0.05
102, L1000,
-0.1 - ~0.1
(A) (B)
0 s 10 5 0 i > 3 r 5
8D, _ 8/D,
Bhattacharva and Rubin, 2014
(a)
*True® From Inverslon:
0.71 a= 0.007500; 0.007428 + 5.1E(-6)
Be = 0.700000; 0.700000 %+ 7.1E(-7)
b= 0.008000; 0.007945 + 4.5E(-6)
D.= 5.0000; 5.0252 + 4.8E(-3)
=0.70
Data
- |nversion fit
0.69] |]]]]
0 50 100 150 200 250 300

Displacement (microns)
Reinen and Weeks, 1993

DIMENSIONLESS FRICTION STRESS
LI
([2

FOR A=!
1000}

w6, V/Vy <<(V/Vy)¢r ; strongly suberitical

0.00

¥ k<2 NIV >V IV). 5 supercriticol
-1000f <-1,}
W/ Vo <0/l
L subcritical

4
'2000}‘ K'Zl '
VoV, <(VA). s
s‘ubcoriticu‘l o » £354 X =0 (steady state line)
- 1 | Jl 1 —
50‘000.00 1000 2000 3000 40.00 5000
Gu et al., 1984 PLeIn (V7))

Blanked and Tullis, 1986

The results often looked “right” or “comparable”

" DIMENSIONLESS FRICTION STRESS
LI
(- Ty

FOR A<l

w6, V/Vy <<(V/Vy)¢r ; strongly suberitical

WV <(V/Vden;
subcritical

4
K=2,'
WV <R dee s
subcritical & £33, A =0 (steady state line)

¥ k<2 NIV >V IV). 5 supercriticol

1 ! N .y
00 1000 2000 30.00 4000 5000
Gu et al., 1984 PL=In(V/V))

&

But there are no tests!

0.69

T T T T T T T
0 50 100 150 200 250 300

Displacement (microns)
Reinen and Weeks, 1993

Blanked and Tullis, 1986

The tools were not friendly to students either

This program solves the rate and state friction laws with 1-d elastic interaction. One or two state variables can be used.

Usage: ./rsfs op_file law v_init v_load hold_time op_inc_hold op_inc_disp max_disp k a bl Dcl b2 dc2 -svtd
where law is: d, r, p, or s
d=Dieterich, slowness law, r=Runia, slip law,
p=Perrin-Rice, quadratic law, s=Segall and Rice eq'n 17
output time vs mu
= output 1ln(v_s/v_init) vs mu
output time vs state(theta)
= output Slider_Displacement vs mu
= output time vs porosity
= stop calculation at peak friction on reload, write a data point there
= set ref fric to 0.6 at 1 mic/s, rather than to arb. value to give 0.6 as initial value

LoadPointDisplacement vs mu is always output, and lp_dis vs. porosity is output if s law is used
Command line definitions:

v_init is the initial, steady-state velocity prior to the hold

v_load is the reload velocity following the hold

hold_time is the hold time in seconds

op_inc_hold is the time increment for output during the hold

op_inc_disp is the disp increment for output following the hold

disp is the final disp for the calc, following the hold

To do a 1 state variable model, set dc2 < @

To do a vel step, set hold_time to a small number and op_inc_hold < hold_time, and use different v_init and v_load

Note: k should have dimensions of 1/length
One or more ASCII text files are written as output. Each row has two columns (time, displacement, friction, etc --as chosen by command line options summarized above) and the output frequency is specified by the co
mmand line parameters op_inc_hold and op_inc_disp

Two example command lines are:
rsfs junk d 1 1 100 .1 .1 200 le-3 0.005 0.01 10 1 -10 -t
rsfs junk d 1 10 le-7 Se-8 0.1 300 le-3 0.005 0.01 10 1 -10 -t

The first example specifies a slide-hold-slide test with one state variable. The output file name is junk, the dieterich state evolution law is used, the initial and re-load velocities are 1 micron/s, hold
time is 100 sec, output is written every 0.1 sec during the hold and 0.1 micron after the hold up to a maximum of 20@ microns, stiffness is 0.001 (friction) per micron, and constitutive parameters are a=0.005, b=
0.01 and Dc of 10 microns. Note that there is nothing intrinsic about the units; the length unit could just as well be taken as meters and the time as hours. The only requirement is that all units be consistent. T

he files junk.dis and junk.tim are output. Each file contains a one line header and then x,y pairs of: junk.dis: load point displacement and friction junk.tim time and friction.

The second example specifies a velocity step test from 1 mic/s to 10 mic/s. There are two data points written during the 'hold' which lasts only le-7 seconds (these are irrelevant to the rest of the calcul
ation) and then data are written every 0.1 micron up to a maximum of 300 microns. The friction parameters and output files are the same as the first example.

The tools were not friendly to students either

This program solves the rate and state friction laws with 1-d elastic interaction. One or two state variables can be used.

Usage: ./rsfs op_file law v_init v_load hold_time op_inc_hold op_inc_disp max_disp k a bl Dcl b2 dc2 -svtd
where law is: d, r, p, or s
d=Dieterich, slowness law, r=Runia, slip law,
p=Perrin-Rice, quadratic law, s=Segall and Rice eq'n 17
output time vs mu
= output 1ln(v_s/v_init) vs mu
output time vs state(theta)
= output Slider_Displacement vs mu
= output time vs porosity
= stop calculation at peak friction on reload, write a data point there
= set ref fric to 0.6 at 1 mic/s, rather than to arb. value to give 0.6 as initial value

LoadPointDisplacement vs mu is always output, and lp_dis vs. porosity is output if s law is used
Command line definitions:

v_init is the initial, steady-state velocity prior to the hold

v_load is the reload velocity following the hold

hold_time is the hold time in seconds

op_inc_hold is the time increment for output during the hold

op_inc_disp is the disp increment for output following the hold

disp is the final disp for the calc, following the hold

To do a 1 state variable model, set dc2 < @

To do a vel step, set hold_time to a small number and op_inc_hold < hold_time, and use different v_init and v_load

Note: k should have dimensions of 1/length
One or more ASCII text files are written as output. Each row has two columns (time, displacement, friction, etc --as chosen by command line options summarized above) and the output frequency is specified by the co
mmand line parameters op_inc_hold and op_inc_disp

Two example command lines are:
rsfs junk d 1 1 100 .1 .1 200 le-3 0.005 0.01 10 1 -10 -t
rsfs junk d 1 10 le-7 Se-8 0.1 300 le-3 0.005 0.01 10 1 -10 -t

The first example specifies a slide-hold-slide test with one state variable. The output file name is junk, the dieterich state evolution law is used, the initial and re-load velocities are 1 micron/s, hold
time is 100 sec, output is written every 0.1 sec during the hold and 0.1 micron after the hold up to a maximum of 20@ microns, stiffness is 0.001 (friction) per micron, and constitutive parameters are a=0.005, b=
0.01 and Dc of 10 microns. Note that there is nothing intrinsic about the units; the length unit could just as well be taken as meters and the time as hours. The only requirement is that all units be consistent. T

he files junk.dis and junk.tim are output. Each file contains a one line header and then x,y pairs of: junk.dis: load point displacement and friction junk.tim time and friction.

The second example specifies a velocity step test from 1 mic/s to 10 mic/s. There are two data points written during the 'hold' which lasts only le-7 seconds (these are irrelevant to the rest of the calcul
ation) and then data are written every 0.1 micron up to a maximum of 300 microns. The friction parameters and output files are the same as the first example.

The requirements were simple:

The requirements were simple:

Research

The requirements were simple:

Research Teaching

Vi,

—_——

B~ i

i N AN
. b
I

- == = 1 |

~—

The requirements were simple:

Research Teaching

b —
: | \ﬁWﬁT‘fﬂT

|

Best Practices

Include the common state relations and elastic coupling

model = rsf.Model()

Set model initial conditions

model.mu@® = 0.6 # Friction initial (at the reference velocity)
model.a = 0.005 # Empirical coefficient for the direct effect

model.k = 1le-3 # Normalized System stiffness (friction/micron)
model.v = 1. # Initial slider velocity, generally is vip(t=0)

model.vref = 1. # Reference velocity, generally vip(t=0)

statel = staterelations.DieterichStatel()
statel.b = 0.01 # Empirical coefficient for the evolution effect
statel.Dc = 10. # Critical slip distance

model.state_relations = [statel] # Which state relation we want to use

We want to solve for 40 seconds at 100Hz
model.time = np.arange(0,40.01,0.01)

We want to slide at 1 um/s for 10 s, then at 10 um/s for 31
lp_velocity = np.ones_like(model.time)
lp_velocity[10x100:] = 10. # Velocity after 10 seconds is 10 um/s

Set the model load point velocity, must be same shape as model.model_time
model. loadpoint_velocity = lp_velocity

Run the model!
model.solve()

Easily make “standard” plots

0.610

¥ Make the phase plot 0005

plot.phasePlot(model)
0.600

¥ Make a plot in displacement

. 0.595

plot.dispPlot(model)
=4
. . 0.590
¥ Make a plot in time

plot.timePlot(model)

0.585

0.580

0.575

0.

0.610 - - - - - - 0.610 -

Friction
OO OO0 O0O
LU o O
oW WYWwwo o
ouwvwouwowm

Friction
OO OO0 OoO
LU o O
0o WYWwo o
ouwvwouwowm

25 30 35 40 0 50 100 150 200 250 300 350

v
=
15t
—
v
N
o

State

O N & O O
State

O N & O O

0 5 10 15 20 25 30 35 40 0 50 100 150 200 250 300 350

Slider Velocity
=N W s W,
O O OO OO
Slider Velocity
=N W s W,
o O O O o

o

0 5 10 15 20 25 30 35 40 0 50 100 150 200 250 300 350
>4 . : : : : > 10 : : : ,
3 sl] 8 8]
2 g0] s I 1
g ‘ L |
-§' 3l) -§' 3| |
s i . A . . .] s . A , .]

0 5 10 15 20 25 30 35 40 0 50 100 150 200 250 300 350

Time

Displacement

Allow users to define their own rules

Allow users to define their own rules

class MyStateRelation(staterelations.StateRelation):

Deflne |t el ??t—_Steady—Stfn’Fe(_Sﬂf; System):r -

self.state = self.Dc/system.vref

def evolve_state(self, system):
return -1 * (system.v % self.state / self.Dc) * log(system.v % self.state / self.Dc)

Allow users to define their own rules

class MyStateRelation(staterelations.StateRelation):

Néea TO provide a Steaday state a LCUaLtT10l nethod

Deﬂne |‘t: def ?(_et__;,téady_state(self, sy;t;mi:

self.state = self.Dc/system.vref

def evolve_state(self, system):
return -1 * (system.v % self.state / self.Dc) * log(system.v % self.state / self.Dc)

statel = MyStateRelation()
U Se it . statel.b = 0.005 # Empirical coefficient for the evolution effect

statel.Dc = 10. # Critical slip distance

model.state_relations = [statel] # Which state relation we want to use

Everything is tested. Against itself which has been compared to
another model.

build ' passing docs latest

HOW DO 1 KNOW TRy DD (T CONFRM

| DIDN'T MAKE A OUR HYPOTHESIS?
MISTAKE IN MY

COMPUTER CODE,
PROF. aMITH?

WWW.PHDCOMICS.COM

We found that some “well established” results were functions of
how the model was setup

0.601 18
116
¥ 05k . 0.600 : -14 -
[[Y Spms .] 1145
30F | & 10pums o =10 MPa . 5 %299 : - l12 8
L | © 30 pvs " 1 S 0598L e NN |
~ 2.5E | © 300pums M 3 5-:’ {10 ©
§ : - 0.597 {g ©
< 2.0F] 0.596 le
- i B : . : : ;
5 : . : 0.595 ﬂ ﬂ : g
'g L5 :— 7 0 50 100 150 200
@ [] Load Point Displacement
5 LO} ; p
7 i B, a=0.0050]
[b=0.0245]
0.5 D=3 pum -
00 TPV ISP P ErTTTY PRy EEPEEFEPPTP B 12.0
0.01 0.1 1 10 100 1000 D E000 111.5
Recurrence interval (sec) ' - uog
5 {1052
S 0.5995) .. ; g
2 410.0
v ; [
los5 2
0.5990 ¢ -)
419.0
i i i i 85
0 50 100 150 200
Load Point Displacement
0.63 - - - 10.6
062L B e 1104
‘ :] -
_ o61l ... T e IR 1022
G 0.60 ; - : 2
= : : : {100 ¢
£ 059 oo et aeaaaas P - ~
A - » los 3
058F o S e mmamaemennn em s G et ceam e maan G memm e mmma s mmnn e o =
057N.”...H.,_”_j“.”,.H..”.f.u.,_”_.“..f..u..u..“_,796
0.56 - - - 9.4
0 50 100 150 200

Load Point Displacement

We found that some “well established” results were functions of
how the model was setup

[
(0]

0.601

=
()]

0.600

0.5 pnvs

5 pmis .] 0599b NN N
10 s ¢ =10 MPa
30 povs "

300 pum/s y

[
E S

[
N
Slider Velocity

N

W
1
[
o

w

o

T
DOoOb <« e

N
| 1
Friction

0.597

[o0)

LA L

> 0.596

(o]

S

] 0.595 1] i i
y 0 50 100 150 200

Load Point Displacement

Stress drop (MPa)

— — N
o W o
Tl IIY"I"

B, a=000s50 1
h={) ()24

D
fm=

12.0
111.5
o2
|105 2
__ 1o 2
: 19.5

19.0
8.5

o]a

Ve

Slide

b0 100 150 200

10.6

,,,,,,,,,, cesmcncsasasscsananas ceseescsssasncnssanss _10.4

110.2°C

lo

e

110.0 >

19.8

.19.6

Slider

i i . 9.4
50 100 150 200

Load Point Displacement

pypi package 0.6.0 | build passing

Jupyter Dashboards Layout

Dashboards make a great way to deploy for student interaction

Extension for Jupyter Notebook that enables the layout and presentation of dashboards from notebooks.

L N

meetup-streaming

&« G jupyter.cloudet.xyz/user/AnY 1jQel3

Jupyter meetup-streaming (autosavad)

Q B + ¥ @ 8B 44 % N B C Maidown

CellToolbar View N &

Arrange and size cells 1o create your dashboard

Streaming Meetups Dashboard

The purpose of this notebook is 1o give an all-in-
neetup.com RSVE AP, through a lecal Spark Streamir
widgets in a dashboard ayout.

-

Park

Wednesday, March 9, 2016, B:30 PM

1,138.0
1,100.0

P

~ ~
=

-~

@ Grouped O Stacked

Peter

Show code on hover

‘ Stream

cne demo of streaming data from the
ng job, and into decla

Give it a try! There are many potential applications: rsfmodel.com

National Library of Australia

http://rsfmodel.com

