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Laboratory observations of slow earthquakes
and the spectrum of tectonic fault slip modes
J.R. Leeman1, D.M. Saffer1, M.M. Scuderi1,2 & C. Marone1

Slow earthquakes represent an important conundrum in earthquake physics. While regular

earthquakes are catastrophic events with rupture velocities governed by elastic wave speed,

the processes that underlie slow fault slip phenomena, including recent discoveries of tremor,

slow-slip and low-frequency earthquakes, are less understood. Theoretical models and sparse

laboratory observations have provided insights, but the physics of slow fault rupture remain

enigmatic. Here we report on laboratory observations that illuminate the mechanics of

slow-slip phenomena. We show that a spectrum of slow-slip behaviours arises near the

threshold between stable and unstable failure, and is governed by frictional dynamics via the

interplay of fault frictional properties, effective normal stress and the elastic stiffness of the

surrounding material. This generalizable frictional mechanism may act in concert with other

hypothesized processes that damp dynamic ruptures, and is consistent with the broad range

of geologic environments where slow earthquakes are observed.
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S
low earthquakes are a mode of self-sustained fault rupture
in which slip accelerates but does not reach rates sufficient
to radiate high-frequency seismic energy1,2. Seismic and

geodetic observations reveal that slow-slip and the related
phenomena of low-frequency earthquakes and non-volcanic
tremor define a spectrum of slip behaviours that unfold over
timescales ranging from seconds to months2–6. Slow earthquakes
can be large, in some cases equivalent to M7þ earthquakes, and
they may play a role in stress transfer and thus triggering of
damaging regular earthquakes7. Slow earthquakes have also been
observed as precursors to regular earthquakes and thus they may
provide insight into the processes of earthquake nucleation8,9.
Although geophysical observations have resolved fine details of
slow earthquake slip and propagation rates of tectonic fault
tremor6,8–10, the fundamental and controlling mechanics of these
phenomena remain enigmatic.

Regular earthquakes have long been understood in terms of
stick–slip failure dictated by frictional and elastic properties of the
Earth’s crust11. Laboratory studies have provided key insights into
the physics of fault failure and its dynamics, both for repeating
earthquake-like stick–slip failure and for more complex slip
behaviours. For example, previous works have reported a range of
observations including transient slip, oscillatory sliding behaviour
and dynamic rupture at sub-Raleigh and supershear propagation
speeds12–18. Transient and oscillatory behaviour have
been interpreted as analogues for premonitory slip prior to
earthquakes or transient aseismic slip12,18,19.

Despite their relevance to natural fault zones and slow
earthquakes, detailed laboratory observations of repetitive slow-
slip transients are few and do not include systematic studies.
These behaviours have been reported in some experimental
work12,14,15, but have been interpreted and modelled in the
context of specific fault rheologies, using so-called ‘designer’
friction laws. In one form of these laws, slow stick–slip is
produced by an increase in frictional resistance with slip velocity,
such that instability is quenched during acceleration14,15,19. Other
explanations for slow earthquakes have focused on processes that
may arrest slip acceleration during earthquake nucleation,
including dilatancy hardening20,21, transitional frictional
behaviour as a function of slip22 or slip rate, and fault zone
heterogeneity. Some numerical simulations successfully predict
complex slip behaviour, including oscillatory behaviour and the
emergence of periodic slow slip20,23. Two-dimensional (2D)
numerical models also show promise in reproducing natural
events, with fewer free parameters than multiple state variable
models24.

To date, the origin of slow earthquakes has been explored
largely via seismic or geodetic data or through numerical
experiments with only sparse, isolated laboratory observations
to probe the underlying mechanics. Although theoretical
models can explain the emergence of slow-slip transients under
certain conditions or for specific frictional rheologies20,21,23,
a fundamental mechanical explanation for these events remains
elusive. Yet, slow modes of fault rupture are observed in a variety
of tectonic and geologic settings, and with a wide range of
durations, raising the question as to whether they arise from a
universal mechanism6,25.

Although many fault zones are rich in phyllosilicate minerals,
which have been shown to exhibit both rate-weakening and
rate-strengthening behaviour under conditions comparable to
those expected in situ in the seismogenic crust24,26,27, we focus on
quartz gouge to investigate the systematics of frictional failure,
because it is a well-studied material that is common in natural
faults, and is thought to play a key role in controlling their slip
behaviour27,28. Quartz gouge also exhibits frictional properties
that enable us to probe the stability boundary using geophysically

relevant values of normal stress and sliding rates. This allows a
detailed investigation of the frictional dynamics of slow slip,
which provides a robust and generalized framework to apply to
tectonic fault zones.

Here we describe laboratory experiments that reproduce
the full spectrum of fault slip behaviours under geophysically
relevant conditions of normal stress and fault composition, and
which illuminate their underlying physics. Our experiments are
designed to explore the full range of slip stability, as described by
the stability parameter k¼ k/kc, from k41 (inherently stable slip)
to dynamic stick–slip (koo1). Consistent with previous
works14,18,23 near the stability boundary, kE1, we observe
complex slip patterns that precede slow slip. We document a
systematic and robust relationship between departure from the
stability threshold, slip velocity and duration of repetitive failure
events. Our experimental results, to the best of our knowledge, are
the first complete and systematic study to investigate the full
spectrum of slip behaviours from slow to fast events, as observed
for tectonic faults.

Results
Mechanical behaviour. In our experiments, gouge layers initially
exhibited stable sliding, followed by the emergence of repeating
slow stick–slip events (Figs 1 and 2a). The slow-slip events arose
gradually, over an interval of up to 1.5 mm, and then increased in
amplitude over as few as 10–20 slip events before reaching a
mechanical steady state, characterized by relatively uniform
recurrence intervals and friction drops, up to the maximum
imposed displacements of Z50 mm. For our layers, which were
3-mm-thick prior to shear, this corresponds to shear strains of
30–50. Each slow-slip event began with a gradual acceleration and
culminated in a slip event and stress drop (Fig. 1).

Stick–slip events. Our experimental results are consistent with
theory, numerical experimentation20,23 and with existing lab data
for stick–slip11. We document a spectrum of stick–slip behaviours
in experiments conducted over a range of normal stresses
(Fig. 2a). At low normal stress (6 MPa) and close to the stability
transition described by equation (1), slip events have
systematically longer duration and smaller stress drops than
their higher normal stress counterparts (Fig. 2c). Details of the
friction records for slow events show that slip begins gradually,
well before the peak strength is reached and then accelerates
during the stress drop (Fig. 2b). The maximum slip velocities for
slow-slip events are in the range of 50–100 mm s� 1, and slip
speed increases systematically with increasing normal stresses,
which leads to increasingly unstable behaviour (equation (1)). For
the lowest values of normal stress that produced repeating
transient slip events, we measured peak slip velocities of only a
few 10’s of mm s� 1, on the order of the driving velocity. For a
normal stress of 14 MPa, we observed audible fast stick–slip
events with slip velocities 42 mm s� 1.

Discussion
The short duration, audible high slip velocity events are
manifestations of dynamic instability and represent laboratory
analogues of regular, fast earthquakes11. Likewise, we posit that
the observed spectrum of slow to fast stick–slip events in our
experiments are representative of the spectrum of slip behaviours
observed on tectonic faults, including repeating slow-slip events
and low-frequency earthquakes4,6. Near the stability transition,
we also document complex and chaotic behaviours including
period doubling and transient variations in stick–slip amplitude
with long-period modulation (Fig. 2a), consistent with theoretical
predictions 23.
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To investigate the mechanics of slow stick–slip events, we
carefully measured both the elastic loading stiffness k and the
critical stiffness kc in each of our experiments. We measured
k directly from the loading curves of stick–slip events and from
unload/reload cycles (Supplementary Fig. 1). Stiffness increases
with shear displacement up to 15 mm, and then reaches an
approximately constant value (Fig. 3; Supplementary Fig. 1).
The increase in stiffness with shearing is consistent with
shear-enhanced compaction and granular comminution during
the first few millimetres of slip29. As noted above, we measure kc

directly from the parameters in Equation (1) using velocity step
experiments (Fig. 3a, Supplementary Fig. 2), and also
empirically using the value of k0 at the observed transition
between unstable and stable slip (black line, Fig. 3b). The
empirically defined threshold stiffness increases with
displacement and reaches a steady value of E7� 10� 4 mm� 1

at a displacement of B16 mm, equivalent to a shear strain of
B5–6 (Fig. 3b). Direct measurements of kc yield similar values
(6–7� 10� 4 mm� 1; Supplementary Fig. 2), and also show that
kc increases dramatically within the first B10 mm of shear
displacement. This is due to the combined effects of increasingly
velocity-weakening friction (Fig. 3a) and decreasing critical slip
distance Dc with shear strain (Supplementary Fig. 2). The evolution
of (b� a) is consistent with inferred shear localization and with the
observation that unstable slip emerges after a finite shear strain
(Fig. 1). The shear displacement needed for the emergence of
slow slip decreases with increasing sn

0 (Fig. 2a), consistent with
enhancement of shear localization and fabric development at
higher sn

0.

Taken together, our direct (Fig. 3a, Supplementary Fig. 2) and
independent (Fig. 3b) measurements of kc

0 and k0 (Supplementary
Figs 1 and 2) show that stick–slip event velocity and duration vary
systematically as a function of distance from the stability
threshold. The slowest events occur for kE1, with progressively
faster events for lower values of k (Fig. 3d,e). The peak slip
velocity and stick–slip duration for all events, measured after
reaching a steady state (Fig. 3c, shaded area), define a complete
spectrum of slip behaviours between stable sliding and fast
stick–slip (Fig. 3d,e). For ko0.7, slip velocities of several mm s� 1

were associated with audible failure events (Fig. 3d). For values of
k approaching 1, the duration of slow-slip is in the order of
seconds (not producing any audible emissions in the range of
human hearing), with lower peak slip velocities (Fig. 3d,e). The
amplitude of the stick–slip events is systematically lower for the
slow events (Fig. 2), consistent with seismic and geodetic
observations for tectonic faults4,6,30.

Our data show that the full spectrum of stick–slip behaviours
can occur over a relatively narrow range of conditions near the
stability phase boundary, and further that the mode—and slip
velocity—of unstable sliding vary predictably as a function of
departure from this threshold. Although the 1D spring-slider
model is simplified relative to the geometry and rheology of natural
fault systems, the predicted stability regimes are remarkably
consistent with our laboratory experimental data. It is also
consistent with theoretical models that incorporate more complex
2D fault geometries and elastic interactions20, suggesting that to
first order, the mechanics and dynamics of these systems are
captured by this relatively simple and elegant model15,18,23,29,31.
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Figure 1 | Experimental run plot. Friction data for one experiment (p4342) at a normal stress of 12 MPa and shearing rate of 10mm s� 1. The upper inset

shows spontaneous emergence of unstable slow slip. Stick–slip amplitude increases gradually over a few millimetres before reaching steady state.

The lower right inset shows details of fault slip events, note the gradual acceleration at the start of each failure event. The lower left inset shows the

double direct shear configuration and locations of displacement transducers. Spikes at 13 and 22 mm displacement are due to brief pauses in shearing to

reset displacement transducers.
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In total, our results illuminate the key ingredients required for
slow earthquakes. Relative to areas where regular earthquakes
occur, kc must remain sufficiently small that it does not greatly
exceed the local fault stiffness k. This can occur for specific
frictional properties—small (b� a) or large Dc—as may be the
case at the upper and lower edges of the seismogenic zone or in
areas of complicated fault zone architecture20. This condition
would also be favoured by low effective normal stress, as has
been suggested in a wide range of settings8,9,31–34. In addition,
we suggest that the mode of fault slip should evolve as tectonic
faults accumulate shear strain, or through the earthquake cycle,
due to progressive changes in fault stiffness and frictional
constitutive properties32,34. Finally, because fault stiffness is
proportional to the ratio of shear modulus to rupture nucleation
patch size, we expect that regions of large, coherent creep slip,
which effectively reduce k, would favour nucleation of slow
earthquakes.

Our results support previous hypotheses about the role of
transitional frictional behaviour in driving complex fault slip
behaviours20,23,31–33. It is likely that transitional frictional
behaviour may act in concert with additional processes acting
locally within a fault zone to produce the observed spectrum of
slip behaviours. A wide range of key natural factors, such as
compliant and evolving damage zones, low effective normal
stress associated with elevated pore fluid pressure and fault
evolution are all captured by the stability parameter k¼ k/kc.
Ultimately, our results suggest that slow earthquakes
and transient fault slip behaviours arise from the same
governing frictional dynamics as normal earthquakes, and

provide a unified view of the spectrum of tectonic fault slip
behaviours.

Methods
Experimental apparatus. Experiments were performed in a servo-controlled
biaxial shearing apparatus using the double direct shear configuration (Fig. 1).
Displacements on the normal and shearing axes were measured by Direct Current
Displacement Transducers (DCDTs), referenced at the load frame and ram nose.
The displacement of the shearing block was measured with DCDTs referenced at
the end-platen and the top and bottom of the shearing block (Fig. 1). Loads applied
to the sample were measured with strain gauge load cells. All transducers are
calibrated with instruments and methods traceable to NIST.

Sample preparation. Samples were prepared using steel or titanium side blocks
and steel or acrylic central shearing blocks (Supplementary Table 1). The forcing
blocks were grooved 0.8 mm deep at 1 mm spacing to eliminate shear at the
boundary. We used Min-U-Sil 40 powdered silica (US Silica Co.) to simulate
granular fault gouge. The product is 99.5% SiO2, with traces of metal oxides, and
has a median grain diameter of 10.5 mm. Samples were constructed as 3-mm-thick
layers, and with 10� 10 cm frictional contact area. Layers were prepared and
sheared under 100% relative humidity at room temperature.

Testing procedure. After samples were placed in the testing machine, a constant
normal stress was applied and maintained constant using force-feedback servo
control. Samples were allowed to compact and accommodate grain rearrangement
before shearing began. Shear was induced by imposing a displacement rate on the
central forcing block (Fig. 1), using a feedback servo control. The displacement rate
was maintained constant at 10 mm s� 1 for the majority of our experiments
(Supplementary Table 1), and velocity step tests were used to determine the friction
rate parameters (a� b) and Dc.

We used a range of shear-loading stiffnesses k given by the summation, in
series, of the apparatus stiffness, the stiffness of the loading blocks and the stiffness
of the layers of fault gouge. The effective loading stiffness of the testing machine
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k0 ¼ k/sn
0 was altered by using a compliant central forcing block and by changing

the applied normal stresses (Fig. 2a). We measured k in experiments using a least-
squares linear fit to friction versus shear displacement for the interval m¼ 0.3� 0.4

and from the elastic loading portion of stick–slip events (Supplementary Fig. 1).
Rate-and-state friction parameters were determined (Supplementary Fig. 2) using
an iterative singular value decomposition technique.
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Frictional stability. In the context of frictional stability, the criterion for unstable
stick–slip in a simplified 1D system is defined by the interaction between loading
system stiffness k and a rheologic critical stiffness of the fault, kc:

kokc ¼ sn0 b� að Þ=Dc ð1Þ

where (b� a) is the friction rate parameter and Dc is the critical slip distance29.
Negative rate parameters, (b� a)o0, indicate velocity-strengthening behaviour,
which is inherently stable. Positive values of (b� a) indicate velocity-weakening
friction and are a prerequisite for instability and earthquake nucleation. Within the
velocity-weakening regime, if the condition in equation (1) is satisfied (that is,
stiffness of the loading system, k, is less than the critical stiffness; kokc), instability
occurs because the fault weakening rate, kc, exceeds the rate of elastic unloading,
leading to a force imbalance. For stiffer systems (that is, k4kc), in which elastic
unloading outpaces frictional weakening, sliding is stable. For convenience,
we normalize the stiffness and critical stiffness by the normal stress, appending
a prime symbol to denote this; k0 ¼ k/sn

0 and kc
0 ¼ kc/sn

0

We selected values of k and normal stress for our experiments to span the
stability boundary for our fault gouge. To achieve this, we made careful
measurements of the evolution of k and kc with shear strain (Supplementary Fig. 1).
For a given set of frictional properties, defined by (b� a) and Dc, the ratio k/sn

0

defines an effective system stiffness, k0 (mm� 1), that governs sliding stability. In
our experiments, the testing machine, sample assembly and gouge layer together
determine the system stiffness. We varied k using different forcing block materials
(Supplementary Table 1) and k0 via the normal stress.
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17. Passelègue, F. X., Schubnel, A., Nielsen, S., Bhat, H. S. & Madariaga, R. From
sub-Rayleigh to supershear ruptures during stick–slip experiments on crustal
rocks. Science 340, 1208–1211 (2013).

18. Scholz, C., Molnar, P. & Johnson, T. Detailed studies of frictional sliding of
granite and implications for the earthquake mechanism. J. Geophys. Res. 77,
6392–6406 (1972).

19. Rubin, A. M. Designer friction laws for bimodal slow slip propagation speeds.
Geochem. Geophys. Geosyst. 12 (2011).

20. Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients
in a subduction fault model. J. Geophys. Res. 112 (2007).

21. Segall, P., Rubin, A. M., Bradley, A. M. & Rice, J. R. Dilatant strengthening as a
mechanism for slow slip events. J. Geophys. Res. 115, B12305–B12337 (2010).

22. Ikari, M. J., Marone, C., Saffer, D. M. & Kopf, A. J. Slip weakening as a
mechanism for slow earthquakes. Nat. Geosci. 6, 468–472 (2013).

23. Gu, J. C., Rice, J. R., Ruina, A. L. & Tse, S. T. Slip motion and stability of a single
degree of freedom elastic system with rate and state dependent friction. J. Mech.
Phys. Solids 32, 167–196 (1984).

24. Hartog, den, S. A. M., Niemeijer, A. R. & Spiers, C. J. New constraints on
megathrust slip stability under subduction zone P–T conditions. Earth Planet.
Sci. Lett. 353-354, 240–252 (2012).

25. Ide, S., Shelly, D. R. & Beroza, G. C. Mechanism of deep low frequency
earthquakes: further evidence that deep non-volcanic tremor is generated
by shear slip on the plate interface. Geophys. Res. Lett. 34, L03308
ð2007Þ:

26. Saffer, D. M., Frye, K. M., Marone, C. & Mair, K. Laboratory results indicating
complex and potentially unstable frictional behaviour of smectite clay. Geophys.
Res. Lett. 28, 2297–2300 (2001).

27. Hartog, den, S. A. M. & Spiers, C. J. Influence of subduction zone conditions
and gouge composition on frictional slip stability of megathrust faults.
Tectonophysics 600, 75–90 (2013).

28. Ikari, M. J., Saffer, D. M. & Marone, C. Effect of hydration state on the
frictional properties of montmorillonite-based fault gouge. J. Geophys. Res. 112,
B06423–12 (2007).

29. Marone, C. Laboratory-derived friction laws and their application to seismic
faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

30. Brodsky, E. E. & Mori, J. Creep events slip less than ordinary earthquakes.
Geophys. Res. Lett. 34 (2007).

31. Kodaira, S. et al. High pore fluid pressure may cause silent slip in the nankai
trough. Science 304, 1295–1298 (2004).

32. Bilek, S. L. & Lay, T. Rigidity variations with depth along interplate megathrust
faults in subduction zones. Nature 400, 443–446 (1999).

33. Kitajima, H. & Saffer, D. M. Elevated pore pressure and anomalously low stress
in regions of low frequency earthquakes along the Nankai Trough subduction
megathrust. Geophys. Res. Lett. 39 (2012).

34. Winberry, J. P., Anandakrishnan, S., Alley, R. B., Wiens, D. A. & Pratt, M. J.
Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream,
Antarctica. J. Glaciol. 60, 795–807 (2014).

Acknowledgements
We thank Steve Swavely for help in the laboratory and Paul Johnson and Cristiano
Collettini for discussions regarding this work. This material is based on work supported
by the National Science Foundation under Grants: DGE1255832 to J.R.L., EAR1045825,
EAR1520760 to CM, OCE0752114, OCE1347344 to C.M. and D.M.S. and European
Union Horizon 2020 research and innovation program under the Marie Sklodowska-
Curie No. 656676 FEAT to M.M.S. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. The work was also supported by
funds from the GDL Foundation and Shell Oil Company.

Author contributions
Experiments were conducted by J.R.L and M.M.S. Data analysis was completed by J.R.L.,
D.M.S. and C.J.M. All authors contributed to the experimental design and writing.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Leeman, J. R. et al. Laboratory observations of slow
earthquakes and the spectrum of tectonic fault slip modes. Nat. Commun. 7:11104
doi: 10.1038/ncomms11104 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11104

6 NATURE COMMUNICATIONS | 7:11104 | DOI: 10.1038/ncomms11104 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Mechanical behaviour
	Stick-slip events

	Discussion
	Figure™1Experimental run plot.Friction data for one experiment (p4342) at a normal stress of 12thinspMPa and shearing rate of 10thinspmgrmthinsps-1. The upper inset shows spontaneous emergence of unstable slow slip. Stick-slip amplitude increases graduall
	Methods
	Experimental apparatus
	Sample preparation
	Testing procedure

	Figure™2Spectrum of fault slip behaviour.(a) Friction data for experiments (p43XX run numbers) at different effective shear-loading stiffness kprime=ksolsgrnprime. Friction data are offset vertically for clarity. The emergence of slow stick-slip occurs at
	Figure™3Stick-slip event properties.(a) The friction rate parameter (b-a) transitions from velocity strengthening to velocity weakening at sim5-7thinspmm displacement. (b) Data from 29 experiments showing effective friction stiffness kprime= ksolsgrnprime
	Frictional stability

	LindeA. T.GladwinM. T.JohnstonM.GwytherR. L.BilhamR. G.A slow earthquake sequence on the San Andreas faultNature38365681996ObaraK.Nonvolcanic deep tremor associated with subduction in southwest JapanScience296167916812002RogersG.DragertH.Episodic tremor a
	We thank Steve Swavely for help in the laboratory and Paul Johnson and Cristiano Collettini for discussions regarding this work. This material is based on work supported by the National Science Foundation under Grants: DGE1255832 to J.R.L., EAR1045825, EA
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




