In situ conditions and the mechanics of slow
earthquakes along subduction megathrusts:
Insights from laboratory experiments
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Spectrum of Fault Slip & Slow Earthquake Phenomena:

 Longer source duration for given magnitude than “normal” earthquakes

Tend to occur at upper and lower edges of rupture/locking regions, though

not exclusivel )
4 e Slip more slowly than “normal”

earthquakes (um-mm s-')
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Slow earthquakes are thought to be a manifestation
of conditional stability (transition between stable and
unstable states)

Slider —_— Simple 1-D spring-slider system analog:

(Plate Movement)

Unstable if the rate of slip weakening
exceeds rate of elastic unloading:

o, (b-a)

K < K=
D

C

Key parameters
1. O’ effective stress, pore pressure
2. (a-b): rate weakening of friction
D.: slip weakening distance
Displacement K: effective stiffness of slip patch

after Scholz (2003)




2-D numerical models of deep subduction interface
support this idea; yield emergent slow slip when K=K..
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|. Merging lab rock physics and data from regional
geophysical surveys: Estimation of in situ conditions

Example from the Nankai Trough where materials relevant to shallow VLFE
are accessible to high-resolution imaging and sampling by drilling

Comparison to inferences from Hikurangi margin where similar work has
been conducted
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Lab Data to Define Constitutive Behavior

Drillcore samples of subduction “inputs”
Varied stress paths, including failure at critical state
P- and S-wavespeed measurements (ultrasonic)

Kitajima & Saffer, 2012 1
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Lab Data to Define Constitutive Behavior

Drillcore samples of subduction “inputs”
Varied stress paths, including failure at critical state

P- and S-wavespeed measurements (ultrasonic)
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“Map” from seismic velocities
defined by field data = to in
situ conditions using lab-
derived constitutive models

Depth [km]
(6]

—i
o

50 40 30
Distance from deformation front [km]

20

Kamei et al., 2012




Nankal VLF events correlate with quantitatively
identified region of overpressure; A = ~0.75-0.9
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The same seems to be true
for North Hikurangi SSE,
though rock properties and

| pressure are less well
Approximate

region of 7 constrained
repeating SSE :

2002-2012
(Wallace et al., 2012)
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2. Laboratory Shearing Experiments: Investigation of
fault stability states and spectrum of slip under
geophysical conditions

Leeman, Saffer, Marone, Scuderi, submitted
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* Repetitive Slow Stick-
Slip Events

K/Kc controlled near
transition, modulated
by effective normal
stress

Friction

Slip speed, recurrence,
stress all decrease
systematically — and
duration increases - as
\Timel Tse) K/Kc approaches unity
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Laboratory shearing study further illustrates conditions that
lead to repetitive slow slip and a spectrum of failure modes:

e Systematic variations in stick-slip duration and speed near the threshold
suggest an explanation for spectrum of fault slip modes rooted
transitional friction and low stress.
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Additional complexities in frictional behavior relevant to
repetitive and slow fault slip

Rate parameter (a-b) increases with sliding velocity = suppress fast rupture.
Minimum at velocities comparable to SSE slip rates.

Dc is large => rise time!?

Increasingly rate weakening with more qtz = role of mineralogy, diagenesis?
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Summary:

Transitional frictional behavior and elevated pore pressure have
been hypothesized as mechanisms. They indeed seem to be
important.

Pore pressure is elevated in well-characterized slow EQ source
regions. This is generally consistent with other — but more
ambiguous — observations in areas of deep SSE, ETS, and VLFE.

Frictional properties point toward conditional stability, quenching
behavior; and importance of fault mineralogy (silica). But more to be
done here (e.g., elevated T, intact fabric, drill core from SSE).

Friction properties and low O’ are also consistent with long rise
times and low stress drops.

Does not rule out other potentially important processes: dilatancy-
hardening, role of heterogeneity or roughness.
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