' Introduction

The classical view that faults fail in seismic or a-seismic fashion has been incomplete since observations of tremor and
slow-earthquakes in a wide range of geologic settings almost a decade ago. Faults fail in a spectrum of slip behavior as demonstrated
by slow slip events, slow and low-frequency earthquakes, episodic tremor and slip, and non-volcanic tremor. The underlying causes of
this spectrum of behavior and the processes that control the failure mode of a particular fault are poorly understood, and constitute one
of the most pressing conundrums of the field. Field observations provide documentation of slow-slip events at many different locations,
but provide little insight into their mechanism. Laboratory observations provide idealized physical models of fault zones, but have
historically been unable to reproduce slow-slip events in a systematic and controllable way. We have demonstrated the full range of the
seismic slip spectrum in the laboratory and present that data in the context of natural observations.
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Single state variable rate-and-state frictional theory suggests that when
k’< k¢’ the system behaves in an unstable fashion with the velocity of the
slider going to infinity (neglecting inertia). When k’> kc’, the system is
intrinsically stable to velocity and stress perturbations and slides in a
stable manner. For the special case of k'= k¢’ we can produce emergent
slow-slip behavior that was previously thought to be explained only by
two state variable systems or a more complicated set of governing
equations. We also show that the event type and slip velocity can be
controlled by varying the effective stiffness (k’) of the system around the
critical effective stiffness (kc’) predicted from basic frictional stability
theory.
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Samples were prepared using steel or titanium side blocks and steel or acrylic
(PMMA) central shearing blocks. We used Min-U-Sil 40 powdered silica (U.S.
Silica Co.) to simulate granular fault gouge. Samples were constructed as 3-mm
thick layers, and with 10 cm x 10 cm frictional contact area. Layers were
prepared and sheared under 100% relative humidity at room temperature.

Shear was induced by imposing a displacement rate on the central forcing block,
using a feedback servo control. The displacement rate was maintained constant
at 10 um/s for the majority of our experiments, and velocity step tests were used
to determine the friction rate parameters (a-b) and Dc. We used a range of shear
loading stiffnesses (k) given by the summation, in series, of the apparatus
stiffness, the stiffness of the loading blocks, and the stiffness of the layers of fault
gouge. The effective loading stiffness of the testing machine (k'=k/c ') was
altered by using a compliant central forcing block (PMMA) and by changing the
applied normal stresses. We measured k in experiments using a least-squares
linear fit to friction vs. shear displacement for the interval u = 0.3 — 0.4 and from
the elastic loading portion of stick-slip events. Rate-and-state friction parameters
__Wwere determined using an iterative singular value decomposition technique.

Laboratory Results
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'Modeling Results
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