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Abstract  

Currently fire detection using satellites is accomplished with algorithms and 

human analysts. Artificial neural networks (ANNs) have been shown to be more accurate 

than algorithms or statistical methods for applications dealing with multiple datasets of 

complex observed data in the natural sciences (Hsieh and Tang, 1998). This paper 

presents results from the testing of an ANN in detecting wildfires utilizing polar orbiter 

numerical data from the Advanced Very High Resolution Radiometer (AVHRR). 

Datasets containing locations of known fires were gathered from the National Oceanic 

and Atmospheric Administration’s (NOAA) polar orbiting satellites via the 

Comprehensive Large Array-data Stewardship System (CLASS). The data was then 

calibrated and navigation corrected using the Environment for Visualizing Images 

(ENVI). Fires were located with the aid of shapefiles generated via ArcGIS.  Afterwards, 

smaller ten pixel by ten pixel datasets were created, which contained the fire (using the 

ENVI corrected data). To vary fire positions in these smaller images, several images of 

the same fire were created, each with the fire in a different location. This ensured that the 

ANN did not only handle cases where the fire was in the center of the image, which is 

needed for this methodology to be applied operationally. Datasets containing no fires 

were also created. These smaller datasets were then randomly separated into categories 

used to train, validate, and test the ANN.  To prevent overtraining of the ANN the mean 

squared error (MSE) of the network was monitored and training was stopped when the 

MSE began to rise.  The accuracy of the neural network was then statistically evaluated.  

The most accurate fire classification network used all six bands of AVHRR data to 

achieve an accuracy ranging from 73-90%.   
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1. Introduction 

1.1 Motivation 

Wildfire detection is necessary for accurate record keeping, fire management, and 

even large fire detection in rural areas.  Wildfires destroyed an estimated 15 x 106 km2 of 

forest in the decade before 1993 (Singh, 1993).  In addition, atmospheric modelers 

struggle with wildfires because they can alter local atmospheric chemistry; in some areas 

fire is the dominant carbon release mechanism, making it vital to closing the carbon 

balance (Sellers et al., 1995).  

1.2 Previous Research 

Remote detection of wildfires has been attempted with a variety of techniques and 

data products with mixed success.  Difficulty in verifying fire location, making a 

computationally reasonable algorithm, and quality control all make this a difficult 

problem in the remote sensing community.   

Detection of wildfire smoke was investigated with limited success by Li et al. 

(2001) using both neural network and multi-threshold approaches.  While neural 

networks provided the desired learning capability they were slow to train over large 

spatial domains.  Multi-threshold approaches did not suffer from processing limitations, 

but the simple categorized output was not as useful and both methods suffered when 

applied to a very large geographic region.   

The satellite services division (SSD) has also experimented using nighttime 

visible imagery to detect fires.  After removing the known lighting sources, an analyst 

can determine if residual light areas on the plot are the product of a fire or an uncorrected 
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anthropogenic source.  The method is very susceptible to cloud cover and still requires 

much human input (McNamara et al., 2002). 

A multi-institution team headed by Jerry Miller of the National Aeronautics and 

Space Administration (NASA) completed a project utilizing three bands of data from 

Geostationary Operational Environmental Satellite (GOES), the Advanced Very High 

Resolution Radiometer (AVHRR), and the Moderate Resolution Imaging 

Spectroradiometer (MODIS).  Miller et al. determined that they saw no unique signature 

for different fire types such as a ground or crown fire in their data.   

The current fire product from the National Oceanic and Atmospheric Association 

(NOAA) uses a combination of many algorithms and human skill to accurately mark 

locations of wildfires.  Information from MODIS, AVHRR, and GOES is used for the 

product. Once data is received from a satellite, it is put through an algorithm for that 

respective satellite. The Wildfire Automated Biomass Burning Algorithm (WF-ABBA) is 

used on GOES data, the Fire Identification, Mapping and Monitoring Algorithm 

(FIMMA) is used on AVHRR data, and MODIS has it’s own specific algorithm. After 

viewing algorithm output and raw satellite images the analyst quality controls the 

products before they are released by marking fires the algorithms have missed and 

deleting false positives. 

1.2 Use of Artificial Neural Networks 

Neural networks, similar to the human brain, are classification machines.  In a 

basic case the network learns classification from a set of exemplars used to train the 

network.  After training, the network can be used to classify unknown data.  The simple 

model for a neural network was proposed in the 1950’s and independently developed 
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(Rosenblatt, 1958; Widrow and Sterns, 1985).  Early neural networks were deemed as 

poor classifiers (Minsky and Papert, 1969) until the 1980’s when interest in neural 

network classification surged after the development of back propagation algorithms 

through hidden neuron layers.   

In both the brain and a neural network there are many interconnected neurons.  

Each connection between two neurons is assigned a weight, defined as the strength of 

interaction/influence of the neurons on each other.  According to Hebb’s rule, the more 

the two neurons fire together (strong correlation) the heavier their connection will be 

weighted.  Modified and mathematically elegant implementations of this idea have been 

developed and implemented into modern ANN design.   

Significant evidence exists (Benediktsson et al., 1990) that neural networks can 

out perform statistical methods with remote sensing data. Neural networks have been 

compared to statistical methods of classification for remote sensing data from multiple 

sources, and it has been found that neural networks have the advantage when no prior 

knowledge about the statistical distribution of classes in the data sources is available.  

Neural networks also handle multi-source data sets well, in which all data sources may 

not be equally reliable (a difficult problem in many statistical frameworks).  This project 

was meant to evaluate the efficiency and accuracy of using ANNs to detect fires from 

AVHRR satellite imagery, and thus determine if ANNs could possibly be used in the 

future along with current algorithms, or possibly on their own, to improve accuracy of 

remote wildfire detection.  
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2. Details and Methods 

2.1 Data Acquisition 

 The first step in data acquisition was determining the times and locations of 

wildfires that had occurred. To determine times and locations of wildfires, an internet 

search for news articles about wildfires was conducted. National Weather Service 

graphics from wildfire outbreaks in Oklahoma were incorporated as well. The 

approximate start and end times, approximate location, and approximate size in acres of 

these wildfires were recorded.   

 Once times and locations of wildfires were known, satellite images including 

these times and locations were downloaded from NOAA’s Comprehensive Large Array-

data Stewardship System (CLASS). These images were opened in the Environment for 

Viewing Images (ENVI) and guidance corrected, accounting for satellite navigation error. 

Once guidance corrected, fires located in the images were numbered. Then, using ENVI, 

one to four ten by ten pixel data sets were created for each fire, varying the position of 

the fire in each image. This method yielded a larger and more varied fire database to be 

used later when utilizing the ANN. Varying fire position was also done to prevent the 

ANN from training to detect fires in the same spot in each image. Each ten by ten section 

was exported to a text file that contained the numerical values for all six channels 

measured by the AVHRR.  

 In order to train the ANN properly both “fire” images and “no-fire” images were 

needed. This helps ensure that the network will train on what is wanted, not an 

unforeseen factor in the data.  Overall 259 “no-fire” cases were stored and 346 “fire” 

cases were stored for a total of 605 cases for the network to train, validate, and test on. 
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2.2 Data Analysis using ANNs 

Most neural networks can be generalized in the form shown in figure 1.  Input 

data are sent to the input layer as vectors and then propagated through connections to the 

hidden and output layers. The weight of each connection is determined during training of 

the network.  To train the network, it is shown examples of input vectors and the desired 

output vectors.  Weights are adjusted through various training algorithms and then the 

network is validated and tested.  The training algorithms are non-trivial in nature and are 

further discussed in Hagan et al., 2002.  Training is conducted until the neural activation 

energies and connection weights are believed to be most accurate, which is referred to as 

well fit.  Over or under training (fitting) can reduce the classification efficiency of the 

neural network. 

The MATLAB neural network toolbox network pattern recognition tool (nprtool) 

was used to initialize the network and a MATLAB code was exported.  The files 

produced by ENVI were formed into comma delimited files with a simple Python script 

containing all input and output vectors.  Several files were produced containing each 

AVHRR channel individually, channels 3a and 3b combined, and all six channels 

combined.  This resulted in eight datasets to work with.  The data was randomly divided 

into training, testing, and validation sub-sets with 65% for training, 15% for validation, 

and 20% for testing.  The network was trained on the input vectors in the training set.   

Training was accomplished with the scaled conjugate descent algorithm (SCG).  

This algorithm was chosen for its computational speed.  Levenberg-Marquardt training 

proved to be unacceptably slow with this data set.  Conjugate gradient algorithms are also 

common in neural networks.  Basic back propagation training techniques descend the 
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error surface in the steepest descent direction (highest negative gradient of the error 

surface).  While this does work, it is not always the most efficient path to solution 

convergence.  Conjugate gradient algorithms search along conjugate paths, but this still 

requires a line search with increases the computational workload.  The SCG prevents the 

need for this line search by pulling ideas from Levenberg-Marquardt.  For a detailed 

discussion of the mathematics see (Moller, 1993). 

Validation is an important step to insure the network is not over fit (has fit the 

noise in the data, not the general trend).  Over fitting is illustrated in figure 2 and can be 

thought of as using a high degree polynomial on a simple data set, fitting every point of 

data.  To prevent over fitting of data the mean squared error is monitored and upon 

increasing, training is halted.   

After validation the network is shown data it has to this point not been exposed to, 

the testing sub-set.  Error in classification on the testing sub-set is recorded as total error, 

true positives, false positives, true negatives, and false negatives.  These figures are likely 

representative of how the network may preform in an operational setting neglecting a few 

problems such as breaks in the clouds, cloud cover obscuring the fire, or sun-glint (no 

examples of these cases were included in the data).   

The process of dividing the data randomly, training, validating, and testing was 

carried out 10 times for each network configuration (number of hidden layer neurons, and 

AVHRR channels used for input).  The number of hidden layer neurons was varied from 

five to three hundred fifty in increments of five.  This results in 552 network 

configurations to be evaluated.   
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3. Results and Discussion 

Figures F1-F8 show the total confusion matrix parameters for each individual 

channel tested as well as the two combinations of channels tested. A confusion matrix 

plots the percentage of true positives, true negatives, false positives, and false negatives 

output by the ANN. Total, in this case, means that the parameters are summarized for all 

the data subsets (training, validation, and testing).  The higher the percentage of positive 

classifications, and thus the lower the percentage of false classifications, the better the 

performance of the ANN. The performance of channel 3a (figure F3) was similar to that 

of 3b (figure F4), but the combination of the two (figure F7) shows a reduction in scatter 

and a slightly raised true negative rate. Channel 1 (figure F1) demonstrated a high false 

positive rate; channel 2 (figure F2) exhibited similar results. Channels 4 (figure F5) and 5 

(figure F6) were better than channels 1 and 2 when determining true negatives. The 

lowest scatter and most desirable result was obtained with all six channels (figure F8). 

Figures 3 and 4 are two different views of the same plot that summarize the 

performance of the ANN. Error (false classification) displayed is only error on the test 

dataset, data the network was only exposed to once for testing to evaluate real-life 

expected output in which new situations are encountered. Channels 1 and 2 were clearly 

the least accurate, and the combination of 3a and 3b was more accurate than either alone. 

The highest accuracy (73%-90%) was achieved by using all channels of the instrument. 

Figure 5 shows the test set error when utilizing all bands of data from the 

AVHRR. It is a 2D plot of the “All” data set in figures 3 and 4.  This test set error shows 

little improvement with increasing hidden layer neurons. There seem to be two weak 

minima around 125 and 240 neurons. The fewer neurons are desirable to reduce 
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computation time.  With a more robust and larger data set the effect of hidden layer 

neurons may become clearer. 

Figure 6 is a plot of the number of training epochs (passes through the data) as a 

function of input channels and number of hidden layer neurons. This figure shows that 

the number of training epochs exhibits little dependence on the number of hidden layer 

neurons. There is a general increasing trend as more complex data is utilized, but the 

computational demands are within reason. 

Fires that occur on the ground (especially in the early stages of fire development) 

may be covered by a heavy forest canopy, which may significantly hamper detection.  

Sun glint off bodies of water has also been noted as a significant cause of false positives 

(Setzer and Malingreau, 1996).  Areas in which local surface temperature is high may 

present a decreased contrast between the land surface and the fire making the detection 

much more difficult and less certain, though it has been suggested that fire smoke can 

induce surface cooling (Robuck, 1991).  Cloud cover can mask evidence of a fire on the 

surface, exemplified by Li et al. (2000). Neural network limitations will somewhat 

hamper the efforts to detect fire.  Hsieh and Tang (1998) discussed the difficulties of 

applying neural networks to meteorological and oceanographic data sets.  The main 

points were: non-linear instability with short data records, dealing with large spatial 

fields, and difficulties of interpreting the non-linear outputs of a neural network.  The 

determination was that all three issues could be addressed with ensemble 

averaging/pruning and non-convergent methods, data pre-filtering through principle 

component analysis (PCA), and interpreting the network hidden layer in a phase space 
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framework respectively. Since the wildfire detection problem considers complex multi-

type, multi-source data, neural networks appear to be the optimal tool.   

4. Conclusions and Summary 

 The most accurate fire classification network used all six bands of AVHRR data to 

achieve an accuracy ranging from 73-90%.  This variability is due to the random training 

of the network and random division of data into training, test, and validation data subsets. 

Based on these results, neural networks have a place in a future suite of remote fire 

detection tools. Even with an accurate network, some human oversight is necessary to 

ensure quality detections. 

Comparison of the 73-90% network accuracy with current algorithms is not 

possible as this network accuracy was determined with a limited number of cases. 

Scanning multiple satellite images with neural network and algorithmic methods, and 

then comparing the results would yield a better comparison. A combination of neural net- 

works and algorithms is likely the most effective operational combination. With the 

current dataset a network with ~125 hidden neurons and a 600 element input vector using 

all 6 channels of the AVHRR data is likely the best configuration. 

Further work to improve the accuracy of ANN fire classification could focus on 

using higher resolution satellite data, utilizing multiple satellite sources such as GOES 

and MODIS, utilizing radar imagery (especially dual polarization radar) to look for 

smoke plumes, including fire risk parameters to prioritize image scanning, and 

determining diurnal and seasonal accuracy variations.  It may also be useful to determine 

a fire size detection threshold, improve filtering of anthropogenic signatures such as 

power stations, and investigate time series prediction of fire evolution.   
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Figures 

 

Figure 1- The basic layout of a neural network with one hidden layer.  The input vectors 

are fed into the system on the left hand side, and processed to produce the output 

activations on the right hand side.  The -1 constant nodes are bias nodes.   
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Figure 2- A demonstration of over fitting.  The solid line represents the fitting of noise in 

the data, while the dashed line shows the output of a properly trained neural network, 

which fits the general trend of the data. (Hsieh and Tang, 1998) 
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Figure 3 – A view of the error associated with the test data sub-set as a function of the 

number of hidden neurons and the channels of AVHRR data used.  It is clear that using 

all channels produces the best results with little variation due to the number of hidden 

layer neurons.  A profile of the error as a function of number of neurons is given in figure 

6. 
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Figure 4 – A second view of the error associated with the test data sub-set as a function of 

the number of hidden neurons and the channels of AVHRR data used (as in figure 3).  

This view makes it easier to determine which channels, in general, had the lowest error.  

As expected IR and near-IR channels have lower error than any other individual channel. 
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Figure 5 - Test set error when utilizing all bands of data from the AVHRR shows little 

improvement with increasing hidden layer neurons. There seem to be two weak minima 

around 125 and 240 neurons. The fewer neurons are desirable to reduce computation 

time. 
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Figure 6 - The number of training epochs as a function of input channels and number of 

hidden layer neurons exhibits little dependence on the number of hidden layer neurons. 

There is a general increasing trend as more complex data is utilized, but the 

computational demands are within reason. 

 

 

 

 

 



 20 

6. Appendices 

Appendix A – Total Classification Error Plots 

The following plots summarize classification error (false positive or false negative) for 

the training, test, and validation data sub-sets.  Results for each channel combination are 

presented. 

 

Figure A1 – Classification 
error on all data sub-sets 
utilizing Ch.1 of the AVHRR 
data. 

 

Figure A2 – Classification 
error on all data sub-sets 
utilizing Ch.2 of the AVHRR 
data. 
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Figure A3 – Classification 
error on all data sub-sets 
utilizing Ch.3a of the 
AVHRR data. 

 

Figure A4 – Classification 
error on all data sub-sets 
utilizing Ch.3b of the 
AVHRR data. 

 

Figure A5 – Classification 
error on all data sub-sets 
utilizing Ch.4 of the AVHRR 
data. 
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Figure A6 – Classification 
error on all data sub-sets 
utilizing Ch.5 of the AVHRR 
data. 

 

Figure A7 – Classification 
error on all data sub-sets 
utilizing Ch.3a,3b of the 
AVHRR data. 

 

Figure A8 – Classification 
error on all data sub-sets 
utilizing all channels of the 
AVHRR data. 
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Appendix B – Training Epoch Plots 

The following plots summarize the number of training epochs (passes through the data) 

required to train the network.  Results for each channel combination are presented. 

 

 

Figure B1 – Number of 

training epochs required 

using AVHRR data from 

Ch.1. 

 

Figure B2 – Number of 

training epochs required 

using AVHRR data from 

Ch.2. 
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Figure B3 – Number of 

training epochs required 

using AVHRR data from 

Ch.3a. 

 

Figure B4 – Number of 

training epochs required 

using AVHRR data from 

Ch.3b. 
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Figure B5 – Number of 

training epochs required 

using AVHRR data from 

Ch.4. 

 

Figure B6 – Number of 

training epochs required 

using AVHRR data from 

Ch.5. 
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Figure B7 – Number of 

training epochs required 

using AVHRR data from 

Ch.3a,3b. 

 

Figure B8 – Number of 

training epochs required 

using AVHRR data from all 

six channels. 
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Appendix C – Test Data Sub-Set Confusion Parameters 

The following plots summarize classification with the standard confusion matrix 

parameters (false positive, false negative, true positive, true negative) for the test data 

sub-set.  Results for each channel combination are presented. 

 

 

Figure C1 – Confusion 

matrix parameters for the test 

data sub-set using AVHRR 

data from Ch.1. 

 

Figure C2 – Confusion 

matrix parameters for the test 

data sub-set using AVHRR 

data from Ch.2. 
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Figure C3 – Confusion 

matrix parameters for the test 

data sub-set using AVHRR 

data from Ch.3a. 

 

Figure C4 – Confusion 

matrix parameters for the test 

data sub-set using AVHRR 

data from Ch.3b. 
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Figure C5 – Confusion 

matrix parameters for the test 

data sub-set using AVHRR 

data from Ch.4. 

 

Figure C6 – Confusion 

matrix parameters for the test 

data sub-set using AVHRR 

data from Ch.5. 
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Figure C7 – Confusion 

matrix parameters for the test 

data sub-set using AVHRR 

data from Ch.3a,3b. 

 

Figure C8 – Confusion 

matrix parameters for the test 

data sub-set using AVHRR 

data from all channels. 
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Appendix D – Validation Data Sub-Set Confusion Parameters 

The following plots summarize classification with the standard confusion matrix 

parameters (false positive, false negative, true positive, true negative) for the validation 

data sub-set.  Results for each channel combination are presented. 

 

Figure D1 – Confusion 

matrix parameters for the 

validation data sub-set using 

AVHRR data from Ch.1. 

 

Figure D2 – Confusion 

matrix parameters for the 

validation data sub-set using 

AVHRR data from Ch.2. 
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Figure D3 – Confusion 

matrix parameters for the 

validation data sub-set using 

AVHRR data from Ch.3a. 

 

Figure D4 – Confusion 

matrix parameters for the 

validation data sub-set using 

AVHRR data from Ch.3b. 
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Figure D5 – Confusion 

matrix parameters for the 

validation data sub-set using 

AVHRR data from Ch.4. 

 

Figure D6 – Confusion 

matrix parameters for the 

validation data sub-set using 

AVHRR data from Ch.5. 
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Figure D7 – Confusion 

matrix parameters for the 

validation data sub-set using 

AVHRR data from Ch.3a,3b. 

 

Figure D8 – Confusion 

matrix parameters for the 

validation data sub-set using 

AVHRR data from all 

channels. 
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Appendix E – Training Confusion Parameters 

The following plots summarize classification with the standard confusion matrix 

parameters (false positive, false negative, true positive, true negative) for the training data 

sub-set.  Results for each channel combination are presented. 

 

Figure E1 – Confusion 

matrix parameters for the 

training data sub-set using 

AVHRR data from Ch.1. 

 

Figure E2 – Confusion 

matrix parameters for the 

training data sub-set using 

AVHRR data from Ch.2. 
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Figure E3 – Confusion 

matrix parameters for the 

training data sub-set using 

AVHRR data from Ch.3a. 

 

Figure E4 – Confusion 

matrix parameters for the 

training data sub-set using 

AVHRR data from Ch.3b. 
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Figure E5 – Confusion 

matrix parameters for the 

training data sub-set using 

AVHRR data from Ch.4. 

 

Figure E6 – Confusion 

matrix parameters for the 

training data sub-set using 

AVHRR data from Ch.5. 
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Figure E7 – Confusion 

matrix parameters for the 

training data sub-set using 

AVHRR data from Ch.3a,3b. 

 

Figure E8 – Confusion 

matrix parameters for the 

training data sub-set using 

AVHRR data from all 

channels. 
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Appendix F – Total Confusion Parameters 

The following plots summarize classification with the standard confusion matrix 

parameters (false positive, false negative, true positive, true negative) for all data sub-

sets.  Results for each channel combination are presented. 

 

 

Figure F1 – Confusion 

matrix parameters for the all 

data sub-sets using AVHRR 

data from Ch.1. 

 

Figure F2 – Confusion 

matrix parameters for the all 

data sub-sets using AVHRR 

data from Ch.2. 
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Figure F3 – Confusion 

matrix parameters for the all 

data sub-sets using AVHRR 

data from Ch.3a. 

 

Figure F4 – Confusion 

matrix parameters for the all 

data sub-sets using AVHRR 

data from Ch.3b. 
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Figure F5 – Confusion 

matrix parameters for the all 

data sub-sets using AVHRR 

data from Ch.4. 

 

Figure F6 – Confusion 

matrix parameters for the all 

data sub-sets using AVHRR 

data from Ch.5. 
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Figure F7 – Confusion 

matrix parameters for the all 

data sub-sets using AVHRR 

data from Ch.3a,3b. 

 

Figure F8 – Confusion 

matrix parameters for the all 

data sub-sets using AVHRR 

data from all channels. 
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Appendix G – AVHRR Instrument Parameters 

A summary of AVHRR parameters from the instrument documentation.  Complete 

documentation available from NOAA or http://oiswww.eumetsat.org/WEBOPS/eps-

pg/AVHRR/AVHRR-PG-4ProdOverview.htm 

 

Table G1 – Spectral specifications for the AVHRR. 
 Channel Central 

wavelength 
(µm) 

Half power points (µm) 

1  0.630  0.580 - 0.680 
2  0.865  0.725 - 1.000 
3a  1.610  1.580 - 1.640 
3b 3.740 3.550 - 3.930 
4 10.800 10.300 - 11.300 
5 12.000 11.500 - 12.500 

 

Table G2 – Scanning parameters for the AVHRR. 
Characteristics Value Unit 
Scan direction East to West (northbound) - 
Scan type continuous - 
Scan rate 0.025 ms 
Sampling interval 
(duration) 

0.1667 s 

Sampling interval 0.0541 deg 
Pixels/scan 2048 - 
Swath ±55.3 deg 
Swath width ±1446.58 km 
IFOV 0.0745 deg 
IFOV type square - 
IFOV size (nadir) 1.08 km 
IFOV size (edge) - across 
track 

6.15 km 

IFOV size (edge) - along 
track 

2.27 km 

Scan separation 1.1 km 
 


