
Morpheus Data Parsing and Plotting A New

Approach to Large Data Set Analysis with Open

Source Tools

J.R. Leeman

August 10, 2011

1 Abstract

Project Morpheus is a technology demonstration project focusing on an

innovative propulsion system, autonomous guidance, navigation, and con-

trol (GNC), and streamlined development techniques enabling space vehicles

development on short timelines without a loss of reliability. Currently the

project has two craft, the Pixel lander (Risk Reduction -1) and the Morpheus

1.0 lander (Risk Reduction 2). Both machines have flown under their own

power and RR-2 is being prepared for its first free flight test which involves

liftoff, translation, and safe landing. The guidance, navigation, and control

(GNC) for the lander was developed on a rapid timeline and produced in

a very modular fashion so it is easily adaptable to changes in the vehicle

structure or entirely different vehicles.

Large data sets produced by the vehicle systems are difficult to mine

for useful information. Most software packages are not capable of handing

datasets with many millions of points. Open source software was produced

1



using python that allowed graphing and data parsing from the Morpheus

GNC files. The software also produces reports of major flight events from

the Autonomous Flight Manager (AFM) output. Using these tools engineers

are able to spend time solving vehicle issues, not parsing data to produce

the graphs and reports used to diagnose problems.

2 Introduction

The Morpheus lander produces volumes of output data, which is difficult

to analyze and graph in an efficient way. A new software package was needed

to standardize the plots used by project engineers, produce useful reports

that can give an overview of the flight at a glance, reduce the time engineers

spent plotting data, and prevent duplication of work by multiple engineers.

Data comes from two sources: flight tests/static tests with the vehicle

and numerical simulation of flights. Both produce data in a very similar

format with the exception that truth data is known in the simulations. At a

minimum around 1000 variables are brought in through the CSV files (Table

1). Currently the data is brought into the trick data plotter (trick dp),

MATLAB, or even into excel. Trick dp is good for plotting simulation data,

but not equipped to plot flight data, resulting in slightly different looking

plots to be produced for simulation data. MATLAB is an effective tool for

plotting the data, but it carries an expensive license fee to just be used for

plotting and there is no repository of plotting scripts for the project. Excel

does not handle such large data sets well and is prone to crashing easily.

There was also no report style output from the flight data to easily allow

a user to glance at the report and learn times of important changes in the

vehicle, monitor vehicle strike counters, and monitor basic true/false flags

in the data. Such a report needs to be produced in a format easily readable

2



on multiple devices (computers, smart phones, tablets, etc) to allow field

data analysis.

By producing such software there will be a reduction in duplication of

work allowing increased man-hours to be dedicated to data analysis. Using

the same plotting package for all data also ensures that all plots look similar

in format and style reducing the chance of data display influencing or biasing

decisions made on that data.

3 Python

Python is an multi-platform, open source interpreted programming lan-

guage. The language is relatively new, appearing the 1991 and designed

by Guido van Rossum. The data analysis toolkit was developed in python

due to its open source nature, readability, and rapid development capabil-

ity. Though not used for this application, the scripts developed could be

easily linked to Fortan or C programs to increase the speed of computations

preformed before data analysis and graphing takes place.

Open source software is gaining popularity in scientific circles. By mak-

ing the source code of an analysis code available it allows others error check

the results and build off of/improve the software. Open source software also

makes the financial impact of data analysis disappear as expensive software

licenses are not required.

The high-level nature of the Python language also makes the source code

very readable. Simple commands can be easily followed and replace many

lines of C code (at the expense of computational efficiency). While doing

post flight data processing computation speed is not of upmost importance,

but rapid development is. The project benefits from using graphs and re-

ports as tools to diagnose performance of the vehicle, but time to develop

3



those tools should be as small as possible. Python allows such rapid devel-

opment and is very easy to learn/alter.

4 Software Design

Modular software design has always been encouraged in scientific com-

munities to make source code reusable and reduce development time. The

CSV Toolkit was designed to be reusable with different vehicle configura-

tions with little to no modification. Plotters, data parsers, configuration

parsers, report generators, and coordinate conversions make up the toolkit

(Table 2).

When wanting to produce a standard suit of plots data is first passed to

a parser/formatter. A user defined configuration file is also passed to the

parser/formatter. The configuration file contains requests to store and plot

certain variables. Requested data is polled from the input files, combined,

and output as a single CSV file. The combined CSV file is then passed to the

reader/plotter. This module also uses the configuration file and produces

the requested plots. The output is stored as PNG, PDF, PS, or JPG (Fig.1).

The AFM report generator works in a similar way. The flight data file

is passed to the same parser/formatter as above. The output of the parser

is then given to a change detector. The change detector monitors certain

variables and marks important changes. Variables such as change in flight

mode, vehicle strike counters, and true/false flags are considered. Important

changes are passed to an HTML writer, which produces as HTML report

that can be opened with any web browser on a desktop or mobile device

(Fig.2).

A graph report tool is also included in the package. This tool simply

looks for graphs produced by the plotter and writes an HTML page to

4



Figure 1: Flow of data in the CSV plotter portion of the toolkit. Note that
the parser/formatter may also be controlled from the command line as well
as the configuration file. There is also an option to produce a .m data file
so existing MATLAB scripts can be used.

Figure 2: Flow of data in the AFM report portion of the toolkit.

5



display them on any web browser. With the addition of FTP capability the

graphs and reports could be automatically be posted to a server immediately

after a flight.

Coordinate conversion is also an import part of data analysis. While the

CSV Tools package only has a basic coordinate converter it was designed to

be expanded easily. The data parser module is reused to pull in data, pre-

form numerical calculations, and write out a new file. Currently quaternion

to Euler angle (eq.1), and radian to degree conversions (eq.2) are supported.


φ

θ

ψ

 =


atan2(2(q0q1 + q2q3), 1 − 2(q21 + q22))

arcsin(2(q0q2 − q3q1))

atan2(2(q0q3 + q1q2), 1 − 2(q22 + q23))

 (1)

degrees = radians · 180

π
(2)

5 Software Use

While describing the use of the software is beyond the scope of this tech-

nical paper, it has been summarized in the CSV Tools Repository Guide

included with the software. The software is run from a user specified config-

uration file. This is a plain text file written in easy to read non-programming

language (Table 3). The data to be used is specified and typed. The graphs

desired are also specified.

There are three types of graphing options in the package. Plotting pa-

rameters that can be set in the configuration file are summarized in table

4. A standard x-y plot of two variables is easy to produce and is called

a std plot. Plots with time stamps on the x-axis are also easy to produce

with the timex plot type (Fig.3). Finally, power spectral density plots are

6



Figure 3: An example timex type plot. The standard type plot is identical,
but with a variable other than time of the x-axis.

computed and produced from single channel data by invoking the psd plot

type (Fig.4). The power sprectral density tool is very versatile with possible

parameters designated in table 5.

Multiple variables from different files may be displayed on the same

graph, as well as figures with multiple subplots. Optional legends on the

figures not only show how each variable is plotted, but also show basic

statistics on the data allowing quick evaluation of that particular parameter.

LATEX notation may be used when specifying all parameters for plot display.

The AFM and graph reports are automatically generated by the associ-

ated code without need for a configuration file. An example AFM report is

shown in figure 5.

7



Figure 4: An example plot of power spectral density.

Figure 5: An example portion of an AFM report generated from Morpheus
flight data.

8



6 Conclusions

A versatile plotting package was produced that met all project goals. The

Morpheus team is less reliant on expensive commercially licensed software

and can produce automated plot sets to rapidly share. The open source

nature of the software and its location in the Morpheus tools subversion

repository allows all team members to access and run the software with

standard or custom configuration files.

By reducing duplication of efforts, team members can spend more time

diagnosing problems with vehicle flight software and less time trying to

produce tools to aid their analysis. By introducing a simple configuration

file format powerful analysis capability is available to non-programmers on

the team. While the plotting package is not meant to replace MATLAB, it

is meant to reduce the reliance on it. The adage of the right tool for the

right job applies more than ever to data analysis.

File Name Description Number of Variables

AFM Autonomous Flight Manager 45

ALTIMETER Laser Altimeter 11

CNTRL Control Subsystem Outputs 24

GPS Global Positioning Data 12

GUID Guidance Commands 53

IMUPRE IMU Preprocessing Data 22

LN200 Output from the Litton IMU 86

SIGI Output from the SIGI IMU 315

NAVKF Kalman Filtered Navigation Output 93

PROP Propulsion Subsystem Output 188

NAVFP Fast Propagation Navigation Output 174

UPP Universal Pointing Package (Nav) 56

Total 1079

Table 1: The GNC files from Morpheus of interest and their associated
number of variables.

9



afm report.py Produce an HTML file highlighting important
changes in variable and strike counter states.

ConfigParse.py Read file and plotting parameters from the con-
figuration text file and pass them as python dic-
tionaries and lists to allow easy plotting param-
eter setup.

Coordinate.py Convert data between vehicle coordinate sys-
tems.

CsvFormat.py Read a csv file and allow the user to write a new
csv file containing only a subset of the existing
data. This script may be called on its own to
run in interactive mode or its functions may be
accessed by other scripts to automate the plot-
ting process. Also can accomidate the merging
of data from multiple CSV files.

DataPlotter.py Given the data and desired headers, plot lay-
outs, etc produces the plots and saves them in
the desired format.

graph report.py Produce an HTML file to display all graphs pro-
duced and directed to the output directory.

RunPlots.py A simple control script that accesses all the
other script’s utility. Given a text configuration
file the existing data is formatted, plotted, and
saved according to the users instructions. This
is the tool that automates the standard suite of
plots.

Table 2: The python scripts that compose the CSV tools repository and a
brief description of their purpose.

10



file name File name of the csv file to read data from.

time start The start time of data to be read/plotted. May
be entered as row number (starting at 0) or as a
time string exactly matching one of those in the
file.

time end The end time of data to be read/plotted (not
enabled in this version of CSV Tools). May be
entered as row number (starting at 0) or as a
time string exactly matching one of those in the
file.

num header Number of header lines in the original csv file.

prefix Add a prefix to the variable names. Used when
the user desires to read in the same file, but with
different parameters. Defaults to none.

decimate Decimate the data. Given as in integer value
(i.e. decimate every 10th data point). Defaults
to 1 for recording all data points.

time var The name of the variable to use for time slicing
with the time start/end cuts. Defaults to the
first column of the file.

var Name of a variable to include in the format-
ted file/plot as it appears in the ORIGINAL file
header.

Table 3: Input file parameters recognized in the text configuration file for
RunPlots.py.

11



PLOT Designates a new plot configuration.

fig name Name with which to save the figure. Also deter-
mines type (png, jpg, pdf, etc).

position Position of the graph on the figure in a rows,
columns format. For one graph on a figure 1,1
is still necessary.

x var The name as it appears in the file header of the
independent variable to plot.

y var The name as it appears in the file header of the
dependent variable to plot.

x label Set label to appear under x axis.

y label Set label to appear under y axis.

rad to deg Convert the y variable from radians to degrees
for plotting.

title Set the graph title (individual title if subplots
are used).

legend Set as True or False to provide a legend entry to
the specific variable. Defaults to True.

END Designates the end of the plot configuration and
readies the code for a new plot.

Table 4: Key parameters used to configure plots and plot layout as recog-
nized in the text configuration file for RunPlots.py.

12



Num FFT Defines the number of data points (integer) to
be used in each block for FFT. Powers of 2 are
the most efficient computationally, but any even
number will run. Default: 256

Fs Sampling frequency Default: 50

detrend Calls a built in matplotlib or custom user
defined function to detrend the data. Mat-
plotlib options are detrend none (default), de-
trend mean(), and detrend linear().

window Uses existing windowing options or takes a
window vector of length NFFT. Windows
avaliable include window hanning() (de-
fault), window none(), numpy.blackman(),
numpy.hamming(), numpy.bartlett(), and those
avaliable in the scipy.signal toolkit. User may
have to change call slightly based on how
packages are imported.

overlap Number of points (interger) overlap between
FFT blocks. Default: 0

padding Number of points to pad data segment for FFT
(integer). While not improving resolution in-
cludes more points in the actual PSD plot al-
lowing smaller peaks to be evident. Default: set
to Num FFT

sides Which side of the PSD to return: ’default’ re-
turns one side for real data and both for com-
plex data, ’onesided’ and ’twosided’ force one
and two sided returns.

freq scale Sets if resulting densities are scaled by the scal-
ing frequency resulting in a unit of Hz−1. De-
fault: True

Fc Center frequency of the signal (integer) offset-
ting the x extents of the plot. Default: 0

Table 5: Parameters used to configure power spectral density plots as rec-
ognized in the text configuration file for RunPlots.py.

13


	Abstract
	Introduction
	Python
	Software Design
	Software Use
	Conclusions

