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Based on these results, neural networks have a place in a future
suite of remote fire detection tools. Even with an accurate network,
some human oversight is necessary to ensure quality detections.
Future work such as implementation of more data sources could
reduce network classification error.

Fig. 4 - Two views of the same plot to summarize network performance. Error (false classification) displayed is only error on the test data-
set, data the network was only exposed to once for testing to evaluate real-life expected output in which new situations are encountered.
23 Channels 1 and 2 are clearly the least accurate, and the combination of 3a and 3b is more accurate than either alone. As expected the

s highest accuracy (73%-90%) is achieved by using all bands of the instrument.
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