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Electric signals generated by tornados
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Severe weather events generate electrical phenomena beyond those related to lightning
discharges. In the present letter we suggest that as precipitation like rain, hail stones, and dirt
move in the thunderstorm they generate an electrical signature that is characteristic for the
rotation properties of the associated storm. A case study is offered which clearly demonstrates
that this electrical signature is present and detectable, though it is quite weak. It can be
observed that as the speed of rotation increases and diameter decreases the emitted frequency
increases as would be anticipated. Comparison to synchronous radar, surface and visual data
suggest that developing tornadoes in this way can be detected earlier than currently feasible
weather surveillance radars.
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1. Introduction

Several investigations hint to a link between thunder-
storm electrification, lightning discharge distributions and
tornado genesis. There is some indication of characteristic
signatures with regard to lightning frequency and polarity in
tornadic storms – for example missing lightning activity
during tornados – but it is not encouraged to use lightning
data as a basis for tornado warnings (Teittinen, and
Maekelae, 2008); (Bluestein, and MacGorman, 1998). Elec-
trification processes however also lead to electromagnetic
Ultra Low Frequency (ULF) radiation (defined as fb10 Hz for
this paper). ULF radiation is home to many natural phenom-
ena. It is even suspected to be useful for earthquake prediction
(Schmitter, 2006); (Ohta et al., 2001) but it also shows a complex
correlation with storm behavior. In the presented study, the
electric fields of a rotating and non-rotating supercell storm have
been recorded and analyzed yielding supporting data sets. In that
way monitoring the electric and/or magnetic component of
rotating storms can lead to an increased understanding of the
generating mechanisms, which in turnwould transfer to shorter
warning times for the public.
.D. Schmitter).
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Triboelectricity (Greek origin of ‘tribo’ is ‘to rub’) is well
known from solid state physics as contact electrification. The
associated charge exchange is a quantum effect resulting from
bringing the Fermi energy of two originally isolated grains to
the same energy level upon contact. With respect to the
atmosphere we can say that winds and mixing dusts produce
triboelectricity. Electrification of contacting grains charges
them oppositely.

Lighter grains (mostly negatively charged, (Ette, 1971)) are
blown upward by convection.

So we get charge separation and a vertical electric dipole
moment M(t). Rotating or swirling grains cause moment
variation in time dM/dt which in turn is the source of
electromagnetic radiation. Also the rotating charged particles
act like a current flowing in a solenoid generating a magnetic
dipole moment. See Section 3 for a short discussion of ULF
generating processes.

Measurements of dust devil electrical properties have
shown that dust devils of 10 m width and 100–200 m height
can develop DC electric fields exceeding several hundred
volts/meter (Freier, 1960). The charge concentration in these
dust devils is 106 e/cm3 and is comparable to the charge
concentration of the terrestrial ionosphere (Crozier, 1964). So
triboelectricity is seen as the most probable source of charge
separation for thunderstorms and also for dust devils. As the
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Fig. 1. ULF time signal from the non-rotating storm (upper trace) and after start of violent rotation with a single weak tornado (lower trace; ordinates in arbitrary
units and abscissa time division is 1/3 s).
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charged droplets, hailstones and/or dirt particles begin to
rotate or move violently an electromagnetic signature is
produced (cp. Section 3). Now the question is: can the signal
be picked out in the mass of electromagnetic interference
present in that environment? Fourier transform can be used
to determine the effective frequency of this signature and to
assess how severe or violent the rotation is. This allows the
operator to see the storm scale become more concentrated.

2. Experimental setup and results

The signals discussed here have been received with a pan
style antenna made of stainless steel to hinder corrosion. This
is mounted on a PVC frame that is secured to the roof of the
research vehicle. It is connected to an E-field receiver in the
vehicle with a discharge tube and backup to prevent lightning
damage. A profound difference is found in rotating and non-
Fig. 2. Fourier analysis of the ULF signal during storm rotation. Displayed is
the logarithmic power of the Fourier coefficients in arbitrary units vs
frequency showing a pronounced peak at 1.2 Hz.
.

rotating super cells. A non-rotating storm produces nothing
more than electrical noise on the monitor (Fig. 1, upper trace).
The slight bump in the upper trace of Fig. 1 is generated by a
passing semi-tractor truck. Vehicles and CB radios are
determined to have a large effect on the E-field readings.
The lower trace in Fig 1 shows the ULF signal near to violently
rotating storm that is about 1/2 mile away from the receiving
antenna that produced one weak tornado. The sampled storm
occurred on May 31, 2008 just outside Guymon, Oklahoma. A
brief tornado formed, but the stormwas in the outer range for
the weather service radars, so the radar resolution is very low
and adds no understanding. Mobile Doppler vehicles were
also collecting data, but were in the process of changing
position when the tornado touched down, so no usable data
was gathered. The signal persisted for a five minute interval.
An oscillation can be seen with a period of about one second.
The FFTanalysis of the rotating signal (Fig. 2) with 214=16,384
data points using a Hanning window exhibits a well defined
spike around 1.2 Hz slightly increasing with shrinking funnel
diameter. The sample ratewas 240 per second, so the total FFT
time period in this case is 214/240=68.3 s. At the present time,
this is the only case study on ULF emissions with our
instrumentation. With more data it should be possible to
determine an effective range to analyze the validity of this
instrument for severe storm warning aid.

3. Process models

Different process models for the generation of Ultra Low
Frequency radiation from rotating storms spawning torna-
does have been discussed. According to (Farrell et al. 2004;
Houser et al., 2003) triboelectrically charged particles moving
in a vortex act like a current in a solenoid generating a
magnetic moment which is proportional to the current, the
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number of ‘turns’ — i.e. the vertical extension of the helix and
to the area of a ‘turn’. So themagneticmoment varies with the
volume of the funnel.

Radial as well as vertical oscillations of the funnel solenoid
produce a periodically changing magnetic moment that in
turn generates an electric field component orthogonal to the
magnetic field and varying with the same time period
(Jackson, 1962). In total an ULF signal with a frequency
reflecting that of the vortex oscillation is emitted. This idea is
consistent with the radial vibration model (Bedard et al.,
2000) that was proposed to explain for infrasound signals in
the 0.5 to 10 Hz range (Bowman and Bedard, 1971); (Bedard
and Georges, 2000); (Bedard et al., 2000). According to this
model parts of the rotating storm core and a fortiori tornado
funnel cores perform radial oscillations with a fundamental
frequency inversely proportional to the core radius, i.e.
roughly: f=200/r (f in Hz, r in m). According to another idea
vertical charge separation within the cone is a mechanism
forming a vertical electric dipole moment pulsating with
height variation of the funnel and so acting as an ULF antenna.
In both cases – i.e. whether the origin of the radiation is an
oscillatingmagnetic or electric dipole moment – its frequency
reflects the natural period of funnel vibrations and so clearly
indicates its onset and decay. Future measurements have to
tell more detailed how ULF frequencies relate to the storm
and vortex geometry.

4. Conclusion

Our case study shows and confirms that tornados can emit
Ultra Low Frequency (ULF) radiation most probably caused by
natural oscillations of the cone. Regarding the relative
simplicity of building and operating ULF E-field receivers
and the characteristically good propagation and penetration
properties of ultra low frequency electromagnetic waves we
are convinced of the potential of this method in a close
cooperation with standard early warning systems. With more
data it should be possible to determine an effective range to
analyze the validity of this instrumentation for severe storm
warning aid and get a better understanding for the generation
mechanisms. This will provide an improvement over even a
trained spotter as they cannot always get a clear picture of
exactly what is happening in the area of rotation.
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