Geophysics 4133 Magnetic Interpretation J.R. Leeman

Name:

For each of the following problems neatly show all steps of your work (partial credit may be given if your work can be easily followed). Clearly indicate your final answers and answer all parts of the question including the 'describe' and 'why' questions.

1. Reduce the following magnetic data and plot the magnetic profile with the reduced values. Assume the theoretical field in the survey area has a total magnitude of 50898.00 nT.

Station	Time	Distance	Reading	Elapsed	Drift Cor-	Final	Value
		[m]	[nT]	Time	rected [nT]	[nT]	
				[min]			
BS	9:40		50905.90				
1	10:01	0	50913.71				
2	10:03	6	50914.46				
3	10:05	12	50915.27				
4	10:06	18	50915.95				
5	10:08	24	50920.31				
6	10:12	30	50927.60				
7	10:15	36	50916.44				
8	10:16	42	50918.96				
9	10:17	48	50919.52				
10	10:18	54	50920.75				
11	10:20	60	50920.98				
BS	10:40		50927.46				

2. Using the data you reduced in problem 2, use half-width relationships to determine the approximate depth of the anomalous body.

3. The geomagnetic poles were located at 79.74°N, 71.78°W and 79.74°S, 108.22°E as of 2005. The geomagnetic pole is slowly drifting away from North America. Using the 2005 locations construct a graph to demonstrate how the inclination of the magnetic field varies from -90° to 90° latitude along a great circle with its longitude passing through the geomagnetic pole locations. (We assume a geocentric dipole.)

4. A magnetic survey was undertaken approximately one half mile west of Dodgeville, Michigan in order to locate the Scales Creek lava flow. Data shown in Table 2 were collected on three 700 foot long N S lines. Line #2 is located 55 feet west of Line #1 while Line #3 is located 95 feet west of Line #1. The data shown below were taken using a EG&G UniMag II proton precession magnetometer (model G 846). Each magnetic field value represents the average of three readings taken at each station. Station 1 located at the north end of each line. A stopwatch was used to measure elapsed time. The magnetic base is located 134.5 feet along an azimuth of 500 from the center line of Elsie Road where it intersects Superior road.

Correct the data for diurnal variation assuming a linear rate of change between reoccupation of the base station. Assign the base station a value of zero nanoteslas, and calculate the relative magnetic effect for all stations. Plot all three survey lines on the same graph. From the graph, determine the strike direction (elongation direction of tilted lava flow) and the dip direction of the Scale Creek lava flow from the shape of the anomaly and position of the anomaly maximum along each line.

Station	South	Line #1	Time	Line $#2$	Time	Line #3	Time
	Distance	Reading	(minutes)	Reading	(minutes)	Reading	(minutes)
	(feet)	(nT)		(nT)		(nT)	
Base		58808	0	58831	0	58823	0
1	0	59013	11	58932	9	58962	10
2	50	59495	14	58994	11	58952	15
3	100	58964	16	59071	12	58935	17
4	150	59278	18	59212	14	59112	19
5	200	59370	19	59394	15	59305	22
6	250	59312	24	59432	17	59342	27
7	300	59485	27	59469	18	59357	29
8	350	60651	29	59976	20	59487	30
9	400	62524	33	61201	22	59827	32
10	425	62764	34	61774	23	60575	33
11	450	62489	39	61954	25	60769	37
12	475	61882	40	61545	26	60906	39
13	500	61528	42	60900	27	60659	41
14	550	58642	46	59830	30	59949	46
15	600	58059	54	58505	34	58654	50
16	650	58176	56	58117	36	58343	53
17	700	58154	57	58184	37	58343	56
Base		58790	70	58823	51	58823	67

5. Describe one engineering/environmental application of magnetic surveying and one deeper geologic application.

6. Why is magnetic surveying faster than gravity surveying?

On my honor, I affirm that I have neither given nor received inappropriate aid in the completion of this exercise.

Name: _____

Date: _____