Geodesy Lab -Introduction

Is the shape of the Earth Really That Complex?

Geodesy

The scientific discipline that deals with the measurement and representation of the Earth, including its gravitational field, in a three-dimensional, time varying space.

Geoid vs. Ellipsoid

Geoid vs. Ellipsoid

- Geoid Equipotential surface that would correspond with mean sea level on a rotating planet if the oceans were otherwise at rest.
- Ellipsoid Mathematically nice representation of the shape of the planet (normally chosen to have the same volume as the geoid)

Ellipsoid Parameters

- a = major axis
- b = minor axis
- flattening = f = (a-b)/a

Surveying your position - Then

Surveying your position - Now

Global Positioning System

- Developed 1974 by DOD
- Functional in 1994 with 24
 Satellites
- 2007 GLONASS became available

Triangulation

GPS "Constellation"

http://www.youtube.com/watch?v=v_6yeGcpoyE

Complications

- Satellite Visibility
- Satellites are constantly moving
- Signal slowed/attenuated by atmosphere
- Multipath Reflection
- Receiver Clock Error
- Orbital Errors
- Satellite Geometry

Differential GPS

DIFFERENTIAL CORRECTION

ECEF Coordinates

ENU Coordinates

Lat/Lon to ECEF

a = 6378137 meters (1/f) = 298.2572241 $C = \frac{1}{\sqrt{\cos^2(\phi) + (1 - f)^2 \sin^2(\phi)}}$ $S = (1 - f)^2 C$ $x_{ecef} = (aC+h)cos(\phi)cos(\lambda)$ $y_{ecef} = (aC+h)cos(\phi)sin(\lambda)$ $z_{ecef} = (aS+h)sin(\phi)$

Next Week - QUIZ!

Introduction to Geophysical Methods Lab

- Rock Properties and when they are useful
- Mathematical Constructs Lab
 - Taylor/Binomial Approximation
 - Vectors/Points/Distance
 - Gradients/Divergence/Curl